SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
AP Calculus 2
Start Test
Study First
Subjects
:
math
,
ap
,
calculus
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. tan 3p/2
0
v2/2
-v3/2
undefined
2. Deriv of f(x)=cotx is?
1/(1+x^2 )
-csc^2x
v3
-v3/3
3. tan 7p/6
v3/3
f^' (x)=lim-(h?0)??(f(x+h)-f(x))/h?
1
e^x
4. Deriv of f(x)=cosx is?
f^' (a)=lim-(x?a)??(f(x)-f(a))/(x-a)? - It is finding the slope of the tangent line at a particular x-value
-sinx
-1
1/2
5. Deriv of e^x
e^x
-v3/2
1/2
1
6. Deriv of tan^(-1)x
1/(1+x^2 )
tanxsecx
-v2/2
f(x) = u/v AND f'(x) = vu'-uv'/v^2 (lo de hi minus hi de lo/ lo squared)
7. tan 7p/4
-v3/2
-1
v3/3
undefined
8. Deriv of log_au=
-v3/3
1/(u ln a ) du/dx
-v3
-1/2
9. Explicit differentiation
0
v2/2
1
very clear; the variable y is explicitly written as a function of x and it only works when you can solve for the function explicitly E.g. y=3x^2-5
10. sin p/6
-v3/2
-1/2
1/2
Deriv of Outside(Inside)*Deriv of Inside - It can be used anytime
11. Implicit differentiation
not clear; when you can solve for y as a function of x - EX) y^3+y^2-5y-x^2=4
-v2/2
v3
-v3
12. tan 2p
-v3/3
a^u lna du/dx
0
-1
13. sin 4p/3
-v3/2
cosx
v2/2
f^' (x)=lim-(h?0)??(f(x+h)-f(x))/h?
14. sin p/4
-v2/2
v2/2
cosx
v3/2
15. tan 3p/4
0
-1
slope of the tangent line
-v2/2
16. cos p/3
v2/2
-v2/2
1/2
-1/2
17. cos 3p/4
1/2
-v2/2
-1/2
-1/(1+x^2 )
18. Deriv of f(x)=sinx is?
f^' (a)=lim-(x?a)??(f(x)-f(a))/(x-a)? - It is finding the slope of the tangent line at a particular x-value
f(x) = (u)(v) AND f'(x) = u'v + v'u
cosx
v3/2
19. Deriv of csc^(-1)x
1/2
v3/3
-1/2
-1/(|x| v(x^2-1))
20. tan 5p/3
-v2/2
-v3/2
-v3
-1/2
21. Guidelines for implicit differentiation
-v3/2
1/v(1-x^2 )
-v2/2
1) find the derivative of both sides of the function 2) put all terms with a y prime on the same side (y prime aka derivative of y) 3) factor out a y 4) solve for y prime
22. sin 11p/6
v3/3
-1/(1+x^2 )
-1/2
1
23. tan 11p/6
-v3/3
-1
sec^2x
-csc^2x
24. What is the Chain Rule? When can it be used?
Deriv of Outside(Inside)*Deriv of Inside - It can be used anytime
-v3/3
1
v3/2
25. sin 5p/4
-v2/2
-1/2
-v3/2
-v3/3
26. cos p/6
-v3/2
v3/2
-v3/3
0
27. Deriv of f(x)=tanx is?
sec^2x
1/(1+x^2 )
v3
-1/(|x| v(x^2-1))
28. Deriv of ln u
v3/3
-1
1/u du/dx
v3/3
29. cos 5p/6
undefined
1) find the derivative of both sides of the function 2) put all terms with a y prime on the same side (y prime aka derivative of y) 3) factor out a y 4) solve for y prime
-v3/2
v3/2
30. tan p
undefined
-1/2
f^' (a)=lim-(x?a)??(f(x)-f(a))/(x-a)? - It is finding the slope of the tangent line at a particular x-value
0
31. cos p
-1
v2/2
not clear; when you can solve for y as a function of x - EX) y^3+y^2-5y-x^2=4
1/u du/dx
32. Deriv of sec^(-1)x
v2/2
-sinx
1/(|x| v(x^2-1))
-1
33. Deriv of cot^(-1)x
1
-v3/2
1)At a "spot" of discontinuity (pt.(hole) - infinite(VA) - jump) 2)At a corner 3)At a cusp(sharp pt.) 4)At a vertical tangent line
-1/(1+x^2 )
34. tan 5p/4
1)At a "spot" of discontinuity (pt.(hole) - infinite(VA) - jump) 2)At a corner 3)At a cusp(sharp pt.) 4)At a vertical tangent line
a^u lna du/dx
1
-v2/2
35. cos 4p/3
-1/2
0
v3
f(x) = (u)(v) AND f'(x) = u'v + v'u
36. tan 5p/6
1/(u ln a ) du/dx
-v3/3
0
1
37. sin 2p/3
0
v3/2
f^' (x)=lim-(h?0)??(f(x+h)-f(x))/h?
v3/3
38. sin 7p/4
-1
-1/2
f^' (x)=lim-(h?0)??(f(x+h)-f(x))/h?
-v2/2
39. tan p/6
-v3/2
v3/3
0
1/(|x| v(x^2-1))
40. Deriv of f(x)=secx is?
v3/2
-1/(|x| v(x^2-1))
very clear; the variable y is explicitly written as a function of x and it only works when you can solve for the function explicitly E.g. y=3x^2-5
tanxsecx
41. tan 4p/3
0
-1
v3/2
v3
42. sin 7p/6
-v2/2
-cscxcotx
-v2/2
-1/2
43. cos 2p/3
-v3/3
-1/2
0
v2/2
44. cos 7p/6
-v3/2
v3
undefined
v3
45. cos 11p/6
undefined
0
-v2/2
v3/2
46. Deriv of sin^(-1)x
-1/(|x| v(x^2-1))
-v3/3
1/(|x| v(x^2-1))
1/v(1-x^2 )
47. sin p/3
tanxsecx
not clear; when you can solve for y as a function of x - EX) y^3+y^2-5y-x^2=4
1/(1+x^2 )
v3/2
48. derivative
slope of the tangent line
-1/v(1-x^2 )
v2/2
-1
49. cos 5p/3
v3/2
tanxsecx
1/2
-v3
50. cos 5p/4
tanxsecx
-v2/2
-1/2
-csc^2x