SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
AP Calculus 2
Start Test
Study First
Subjects
:
math
,
ap
,
calculus
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. cos p/6
1
v3/2
not clear; when you can solve for y as a function of x - EX) y^3+y^2-5y-x^2=4
1/v(1-x^2 )
2. Deriv of cot^(-1)x
v3/3
-v3/2
f(x) = (u)(v) AND f'(x) = u'v + v'u
-1/(1+x^2 )
3. derivative
-1
-v3
slope of the tangent line
f(x) = u/v AND f'(x) = vu'-uv'/v^2 (lo de hi minus hi de lo/ lo squared)
4. cos p/4
1
v2/2
-v3/3
1/2
5. Deriv of f(x)=cosx is?
0
-sinx
1)At a "spot" of discontinuity (pt.(hole) - infinite(VA) - jump) 2)At a corner 3)At a cusp(sharp pt.) 4)At a vertical tangent line
1/2
6. sin p/2
1
0
undefined
-v2/2
7. sin 5p/4
-1
-v2/2
f(x) = u/v AND f'(x) = vu'-uv'/v^2 (lo de hi minus hi de lo/ lo squared)
1
8. Deriv of sin^(-1)x
1/v(1-x^2 )
-1/(|x| v(x^2-1))
-v3
-v3/2
9. What is the quotient rule?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
10. what is the the limit definition of a derivative and what does it find?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
11. sin 4p/3
-v3
1
v3/2
-v3/2
12. sin 7p/4
-v2/2
-cscxcotx
f(x) = (u)(v) AND f'(x) = u'v + v'u
v2/2
13. cos 3p/4
-1/2
1/2
-v2/2
1
14. cos 7p/4
-1
v2/2
-v3/2
undefined
15. tan 2p
1
-1
0
f^' (a)=lim-(x?a)??(f(x)-f(a))/(x-a)? - It is finding the slope of the tangent line at a particular x-value
16. Deriv of f(x)=csc is?
-cscxcotx
1/u du/dx
undefined
-1/2
17. sin 5p/6
0
1/2
-v2/2
sec^2x
18. tan 2p/3
-v3
-1/v(1-x^2 )
1/(u ln a ) du/dx
Deriv of Outside(Inside)*Deriv of Inside - It can be used anytime
19. cos 4p/3
-v3
1
-1/2
1/u du/dx
20. Deriv of f(x)=sinx is?
cosx
-1/2
f^' (a)=lim-(x?a)??(f(x)-f(a))/(x-a)? - It is finding the slope of the tangent line at a particular x-value
slope of the tangent line
21. tan 3p/4
0
-1
-sinx
-v3
22. When do derivatives not exist?
-1/(|x| v(x^2-1))
-v3/2
1)At a "spot" of discontinuity (pt.(hole) - infinite(VA) - jump) 2)At a corner 3)At a cusp(sharp pt.) 4)At a vertical tangent line
-1/2
23. Deriv of e^x
undefined
-v2/2
v2/2
e^x
24. tan p/3
v3
1/2
f(x) = (u)(v) AND f'(x) = u'v + v'u
v2/2
25. cos 5p/6
-v3/2
1
-1/2
-v3/3
26. cos p/2
1/2
f^' (a)=lim-(x?a)??(f(x)-f(a))/(x-a)? - It is finding the slope of the tangent line at a particular x-value
-csc^2x
0
27. cos p/3
1/2
v2/2
f^' (a)=lim-(x?a)??(f(x)-f(a))/(x-a)? - It is finding the slope of the tangent line at a particular x-value
1/(1+x^2 )
28. cos 7p/6
1/v(1-x^2 )
-1
-v3/2
v3/2
29. cos 2p
1
v3/2
0
1)At a "spot" of discontinuity (pt.(hole) - infinite(VA) - jump) 2)At a corner 3)At a cusp(sharp pt.) 4)At a vertical tangent line
30. sin p/3
f(x) = u/v AND f'(x) = vu'-uv'/v^2 (lo de hi minus hi de lo/ lo squared)
-v3/3
v3/2
-v3/2
31. Deriv of ln u
0
1/u du/dx
f(x) = (u)(v) AND f'(x) = u'v + v'u
-1/(|x| v(x^2-1))
32. Deriv of f(x)=tanx is?
f^' (a)=lim-(x?a)??(f(x)-f(a))/(x-a)? - It is finding the slope of the tangent line at a particular x-value
-sinx
1/2
sec^2x
33. tan 7p/4
-1/2
0
1
-1
34. What is the product rule?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
35. Deriv of csc^(-1)x
0
Deriv of Outside(Inside)*Deriv of Inside - It can be used anytime
v2/2
-1/(|x| v(x^2-1))
36. tan 3p/2
1
undefined
-1
not clear; when you can solve for y as a function of x - EX) y^3+y^2-5y-x^2=4
37. sin 2p
-v3/2
v3/2
0
not clear; when you can solve for y as a function of x - EX) y^3+y^2-5y-x^2=4
38. cos 3p/2
e^x
-1/2
1/2
0
39. Deriv of log_au=
1/v(1-x^2 )
-v3
-v3/3
1/(u ln a ) du/dx
40. tan p/4
-1/v(1-x^2 )
tanxsecx
1
-csc^2x
41. tan 7p/6
v3/2
v3/3
1/u du/dx
-1/v(1-x^2 )
42. cos 11p/6
v3/2
-v3/3
-v3/2
1/u du/dx
43. tan p
v2/2
1/2
0
-v2/2
44. Implicit differentiation
1/(|x| v(x^2-1))
v3/2
-v2/2
not clear; when you can solve for y as a function of x - EX) y^3+y^2-5y-x^2=4
45. sin 2p/3
f^' (x)=lim-(h?0)??(f(x+h)-f(x))/h?
-v3/3
e^x
v3/2
46. What is the Chain Rule? When can it be used?
f^' (x)=lim-(h?0)??(f(x+h)-f(x))/h?
v3/2
Deriv of Outside(Inside)*Deriv of Inside - It can be used anytime
-sinx
47. sin p/6
tanxsecx
cosx
sec^2x
1/2
48. Deriv of cos^(-1)x
-1/v(1-x^2 )
-v3/2
-1
-1/(|x| v(x^2-1))
49. tan 5p/6
a^u lna du/dx
-v3/3
-v3/2
f^' (x)=lim-(h?0)??(f(x+h)-f(x))/h?
50. Explicit differentiation
-1/2
f(x) = (u)(v) AND f'(x) = u'v + v'u
-v3
very clear; the variable y is explicitly written as a function of x and it only works when you can solve for the function explicitly E.g. y=3x^2-5