SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
CCNP
Start Test
Study First
Subjects
:
cisco
,
it-skills
,
ccnp
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Explain the relationship between MBone - DVMRP - PIM - IGMP - CGMP hosts - routers and switches?
2. Explain the methods of advertising networks in BGP.
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
Local preference<br />Atomic Aggregate BGP
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
3. Explain the Community attribute.
4. What is a BGP route reflector - What is it purpose?
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
Must insure loopback is reachable in the routing table. BGP
Globally:<br />Router(config)# ip multicast-routing<br />Per Interface:<br />Router(config-if)# ip pim dense-mode<br />Enabling PIM on an interface also enables IGMP operation on that interface.<br /> Multicast
5. Explain the way RR handles route updates.
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
When using the <span style='font-style:italic;'>classful</span> method - at least one subnet of the classful range must reside in the IP routing table.<br /><br />When using the <span style='font-style:italic;'>classless</span> method the exact subne
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
6. What is the command to enable BPG authentication?
(S -G) - 'S comma G'; Source sending to the group. Typically reflect a source tree but can appear on a shared tree. Traffic forwarded via the shortest path from the source.<br />(* -G) - 'Star comma G'; Any source sending to the group. Traffic forwar
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
This router originated the route. BGP
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
7. What are the 6 BGP Neighbor states?
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
WM<br /><br />List of AS numbers pre-pended with a list of AS numbers that the route has traversed and the originating AS at the end. 'Path to 192.168.1.0 is (65500 - 65420 - 65874)'<br /><br />This insures a loop-free environment. If BGP receives a
Path Vector - policy based routing protocol.<br />Uses BGP attributes are the 'metric'. <br />Path it decides it based on 'hops' where hop is Autonomous Systems.<br /> BGP
8. What is the full mesh versus partial mesh IBGP and What are the implications of each?
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
R1(config-router)# neighbor 192.168.1.1 next-hop-self<br /><br />Cause each routers outgoing interface that the route traverse wihtin the AS (iBPG peers) to annouce itself as the 'next hop' instead of the next hop into the neighboring AS.<br /><br />
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
9. How is the BGP network command differ from IGP's?
IANA delegates to Regional Internet Registries (RIRs):<br />ARIN - AfriNIC - APNIC - LACNIC and RIPE NCC<br /> BGP
It actually determines which networks are advertised. BGP
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
TCP port 179<br />Reliability; uses sliding window<br />Triggered - incremental updates made very efficient<br /> BGP
10. What does PIM use for its multicast routing calculations?
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
Path Vector - policy based routing protocol.<br />Uses BGP attributes are the 'metric'. <br />Path it decides it based on 'hops' where hop is Autonomous Systems.<br /> BGP
Links = n(n-1)/2 BGP
This router originated the route. BGP
11. Describe 4 multicast application models and give an example of each?
EBGP will only peer to direclty connected neighbors and a loopback is considered one hop away.<br /><br />With eBGP peering to a loopback you must enable eBGP Multihop.<br /><br />R1(config-router)# neighbor 192.168.1.1 ebgp-multihop 2 BGP
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
12. What is the difference between iBGP and eBGP?
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
Globally:<br />Router(config)# ip multicast-routing<br />Per Interface:<br />Router(config-if)# ip pim dense-mode<br />Enabling PIM on an interface also enables IGMP operation on that interface.<br /> Multicast
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
It actually determines which networks are advertised. BGP
13. What type of protocol is BGP classified as? What is its decision engine?
14. What config would be used to configured an outbound BGP distribute list to block all routes from being advertised except ones from 192.168.0.0 /24 network to neighbors 10.1.1.1 and 10.1.1.2?
Router#(config) router bgp 1<br />Router#(config-router) neighbor 192.168.1.1 remote-as 1<br />Router#(config-router) network 192.168.0. mask 255.255.255.0<br /> BGP
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
Default-Network<br />Static route<br /> BGP
15. Name a significant inefficiency with IGMPv1.
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
R1(config-router)# neighbor 192.168.1.1 next-hop-self<br /><br />Cause each routers outgoing interface that the route traverse wihtin the AS (iBPG peers) to annouce itself as the 'next hop' instead of the next hop into the neighboring AS.<br /><br />
Members leave through attrition; no leave group message. This keep traffic flowing for a period of time even with no group members. Multicast
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
16. What are some of the obstacles with IGMP and multicast in general as it relates to layer 2/switches?
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
Variable length sequence of path attributes<br />Attribute Type -1 byte flag field - 1 byte type code<br />Attribute Length <br />Attribute Value<br />Attribute flag field = 0000 0000<br />W | O - T | N - P | C<br /> BGP
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
17. What command will produce the following output and What is it displaying?<br /><br /><img src='5d3c9233dd205ee4319ef0ac2fc07460.jpg' />
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
Loopback more resilient than physical interfaces. BGP
The BGP Table<br /><br />Command = show ip bgp BGP
18. What is a neighbor call in BGP?
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
BGP peer BGP
TCP port 179<br />Reliability; uses sliding window<br />Triggered - incremental updates made very efficient<br /> BGP
19. Explain what role IGMP plays.
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
When using the <span style='font-style:italic;'>classful</span> method - at least one subnet of the classful range must reside in the IP routing table.<br /><br />When using the <span style='font-style:italic;'>classless</span> method the exact subne
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
20. Explain how the multicast routing table is populated.
When AS has more than one connection to the Internet it is called multihoming.<br />Inbound reliability<br />Better performance by selecting more optimal paths<br />Multihoming can be to one ISP or to several.<br /> BGP
Default-Network<br />Static route<br /> BGP
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
21. State how IGMPv1 operates.
Class D address space<br />First bits are ALWAYS 1110<br />224.0.0.0 - 239.255.255.255<br /> Multicast
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
Loopback more resilient than physical interfaces. BGP
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
22. Explain CGMP.
23. What is the terminology for BGP route reflector?
24. How does a host learn about available multicast streams?
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
Links = n(n-1)/2 BGP
The is the multicast bit. Multicast
25. What are three different common ways to perform BGP multihoming with regard to routing table?
Show ip bgp - Shows entire BGP topology database (BGP table)<br /><br />show ip bgp rib-failure - Displays BGP routes not installd into the routing information base (RIB) and reason they were not installed.<br /><br />show ip bgp neighbors - Displays
ISP passes only default route to AS.<br />ISP passes default route and provider owned select routes to AS.<br />ISP passes all routes to AS.<br /> BGP
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
EBGP = 20<br />iBGP = 200<br /> BGP
26. What is one mechanism that GURANTEES the BGP AS path is loop free?
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
The router will not accept a routing update that includes its AS number in the path. BGP
AS-Path<br />Next Hop<br />Origin BGP
Router#show ip igmp interface fa0/0<br /> Multicast
27. What effect does (S -G) and (* -G) entries have on router CPU?
Cisco Proprietary - between router and switch<br />'Client/Server': Router = CGMP Server - Switch = CGMP Client<br />When router sees IGMP control message it creates a CGMP packet with the mutlicast MAC + client MAC; sends this to 'All CGMP Devices M
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
Show ip bgp - Shows entire BGP topology database (BGP table)<br /><br />show ip bgp rib-failure - Displays BGP routes not installd into the routing information base (RIB) and reason they were not installed.<br /><br />show ip bgp neighbors - Displays
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
28. What are two methods of establishing a gateway of last resort?
Links = n(n-1)/2 BGP
Default-Network<br />Static route<br /> BGP
It actually determines which networks are advertised. BGP
The is the multicast bit. Multicast
29. What is a BGP black hole and how is it avoided?
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast
Concatenation of the first (high order) 25 bits of the reserved MAC address range with the last (low order)23 bits of the multicast group IP address. 5 bits of overlap allowing for 32 address (2^5) for each multicast MAC address. 25 bits + 23 bits<br
When not all routers within a transit AS have consistent routing information - due to not running BGP or misconfiguration or BPG speakers. Routing information is advertised but since not all routers within AS can reach the destination traffic is halt
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
30. Name the Well-known discretionary attributes.
<img src='9618cf01b9422f541fc213b74a3bd9de.png' /> Multicast
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
Local preference<br />Atomic Aggregate BGP
31. What are the 3 BGP tables and What is in them?
IANA delegates to Regional Internet Registries (RIRs):<br />ARIN - AfriNIC - APNIC - LACNIC and RIPE NCC<br /> BGP
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
32. What is the multicast IP address space?
Concatenation of the first (high order) 25 bits of the reserved MAC address range with the last (low order)23 bits of the multicast group IP address. 5 bits of overlap allowing for 32 address (2^5) for each multicast MAC address. 25 bits + 23 bits<br
The BGP Table<br /><br />Command = show ip bgp BGP
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
Class D address space<br />First bits are ALWAYS 1110<br />224.0.0.0 - 239.255.255.255<br /> Multicast
33. What is the significance of the 8th bit in the MAC address?
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
The is the multicast bit. Multicast
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
34. What does a 0.0.0.0 signify in the Next Hop column in the BGP Table?
Show ip bgp - Shows entire BGP topology database (BGP table)<br /><br />show ip bgp rib-failure - Displays BGP routes not installd into the routing information base (RIB) and reason they were not installed.<br /><br />show ip bgp neighbors - Displays
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
AS-Path<br />Next Hop<br />Origin BGP
This router originated the route. BGP
35. What is the solution to establishing neighbor relationships when multiple paths exist? What are the command to establish this? What command to tell R1 to use its loopback0 interface as the update source neighbor 192.168.1.1.
Use loopback interface to establish the neighbor. (i.e. peer to a loopback interface)<br />Tell BGP to use the lookback interface as teh source of updates<br /><br />R1(config-router)# neighbor 192.168.1.1 update-source loopback0<br /> BGP
Router#show ip igmp group<br />Group address - interface - uptime - expires - and last reporter.<br /> Multicast
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
36. What are the administrative distances of eBGP and iBGP?
Path Vector - policy based routing protocol.<br />Uses BGP attributes are the 'metric'. <br />Path it decides it based on 'hops' where hop is Autonomous Systems.<br /> BGP
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
EBGP = 20<br />iBGP = 200<br /> BGP
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
37. Name 6 multicast routing protocols.
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
It actually determines which networks are advertised. BGP
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
38. What is BGP multihoming and why would you want to do it?
Default-Network<br />Static route<br /> BGP
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
Router#show ip igmp interface fa0/0<br /> Multicast
When AS has more than one connection to the Internet it is called multihoming.<br />Inbound reliability<br />Better performance by selecting more optimal paths<br />Multihoming can be to one ISP or to several.<br /> BGP
39. Explain the Next-Hop attribute. How does this differ from IGP's? In what environment might this be problematic?
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
Using a Distribute List to filter outbound routing updates. BGP
40. Describe how PIM-DM operates.
41. Describe how PIM-SM operates.
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
RFC 2362<br />Pull model - traffic only forwarded to the parts of the network that need it. Sender registers with the RP which is a proxy to group members.<br />Last hop routers to receiver knows the group RP IP address and sends a (* -G) join toward
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
42. What advantage is there it establishing a neighbor relationship using a loopback interface?
Loopback more resilient than physical interfaces. BGP
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
<img src='9618cf01b9422f541fc213b74a3bd9de.png' /> Multicast
Open - Version - AS - Hold Time - BGP Router ID - Optional Parameters<br />Keepalive - Sent every 60 seconds by default; hold time 180 Seconds.<br />Update - Information on only ONE path; <br />Notification - When error condition detected<br /> BGP
43. What command is used to override the Next-Hop attribute of BGP? What does this do and when would you use this?
44. Explain the Local Preference attribute.<br />
45. Describe how and IGMPv2 host leaves. What is the interaction between host and router look like?
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
Members leave through attrition; no leave group message. This keep traffic flowing for a period of time even with no group members. Multicast
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
46. What is the signifigance of the neighbor address when establishing BGP neighbor in the context of network that has multiple paths to the neighbor?
EBGP = 20<br />iBGP = 200<br /> BGP
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
Group of BGP routers being configured that have the same update policy.<br />Similar to a 'template'; members then assigned to the peer group.<br /> BGP
The neighbor expects to see the updates from the source address configured in the neighbor statement. BGP
47. What are the methods to control multicast within the layer 2 domain? What are some benefits & drawbacks of each?
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
48. Which IOS command shows what version of IGMP is running?
Router#show ip igmp interface fa0/0<br /> Multicast
IANA delegates to Regional Internet Registries (RIRs):<br />ARIN - AfriNIC - APNIC - LACNIC and RIPE NCC<br /> BGP
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
The BGP Table<br /><br />Command = show ip bgp BGP
49. What are the 4 BGP packet types? What do they contain?
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
Routes learned through IBPG are never propogated to other IBGP speakers.<br /><br />This is a loop prevention mechanism. BGP
Open - Version - AS - Hold Time - BGP Router ID - Optional Parameters<br />Keepalive - Sent every 60 seconds by default; hold time 180 Seconds.<br />Update - Information on only ONE path; <br />Notification - When error condition detected<br /> BGP
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
50. Explain the multicast routing table distribution tree notations.