SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
CCNP
Start Test
Study First
Subjects
:
cisco
,
it-skills
,
ccnp
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. What is the command to configure a BGP RR?
Rule: Router must be known by an IGP before it may be advertised by BGP peers.<br />Prevents 'blackholes' when AS is a transit network and not all speaker are running BGP<br />Should be left on it AS is a transit AS and not all routers run BGP.<br />
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
2. Explain the BGP route decision process? How many routes does it select? Where do they go? Where do the ones go that are not used?
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
3. Explain the concept of RPF.
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
The is the multicast bit. Multicast
4. What does PIM use for its multicast routing calculations?
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
The Source and Share Tree models are the working model of how the tree is built; all multicast routing protocols fit into one or both. This is the 'theory' or model.<br />PIM-DM's operational falls in the source tree model and PIM-SM is classified an
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
5. What block of multicast MAC addresses belong to multicast?
Path Vector - policy based routing protocol.<br />Uses BGP attributes are the 'metric'. <br />Path it decides it based on 'hops' where hop is Autonomous Systems.<br /> BGP
The Source and Share Tree models are the working model of how the tree is built; all multicast routing protocols fit into one or both. This is the 'theory' or model.<br />PIM-DM's operational falls in the source tree model and PIM-SM is classified an
WM<br />One of three values: <br />IGP - Route is interior to the originating AS. (BGP table shows 'i')<br />EGP - Route learned via EGP. (BGP table shows 'e')<br />Incomplete - Routes origin is unknown - usually when redistributed. (BGP table shows
0100.5e00.0000 - 0100.5e7f.ffff - IANA reserved. Multicast
6. What is a BGP black hole and how is it avoided?
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
When not all routers within a transit AS have consistent routing information - due to not running BGP or misconfiguration or BPG speakers. Routing information is advertised but since not all routers within AS can reach the destination traffic is halt
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
7. What are the 3 BGP tables and What is in them?
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
TCP port 179<br />Reliability; uses sliding window<br />Triggered - incremental updates made very efficient<br /> BGP
WM<br /><br />List of AS numbers pre-pended with a list of AS numbers that the route has traversed and the originating AS at the end. 'Path to 192.168.1.0 is (65500 - 65420 - 65874)'<br /><br />This insures a loop-free environment. If BGP receives a
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
8. What is the difference between iBGP and eBGP?
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
(S -G) - 'S comma G'; Source sending to the group. Typically reflect a source tree but can appear on a shared tree. Traffic forwarded via the shortest path from the source.<br />(* -G) - 'Star comma G'; Any source sending to the group. Traffic forwar
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
Places it in the routing table. BGP
9. What is the key difference between how a multicast routing protocol forwards packets versus a unicast routing protocol?
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
10. What is the significance of the 8th bit in the MAC address?
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
The is the multicast bit. Multicast
11. Describe how PIM-DM operates.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
12. Name the Well-known mandatory attributes.
R1(config-router)# neighbor 192.168.1.1 next-hop-self<br /><br />Cause each routers outgoing interface that the route traverse wihtin the AS (iBPG peers) to annouce itself as the 'next hop' instead of the next hop into the neighboring AS.<br /><br />
AS-Path<br />Next Hop<br />Origin BGP
The is the multicast bit. Multicast
BGP peer BGP
13. What is the IBGP Split Horizon rule? What does this accomplish?
<img src='9618cf01b9422f541fc213b74a3bd9de.png' /> Multicast
Routes learned through IBPG are never propogated to other IBGP speakers.<br /><br />This is a loop prevention mechanism. BGP
Open - Version - AS - Hold Time - BGP Router ID - Optional Parameters<br />Keepalive - Sent every 60 seconds by default; hold time 180 Seconds.<br />Update - Information on only ONE path; <br />Notification - When error condition detected<br /> BGP
Using a Distribute List to filter outbound routing updates. BGP
14. What are the 4 BGP packet types? What do they contain?
Open - Version - AS - Hold Time - BGP Router ID - Optional Parameters<br />Keepalive - Sent every 60 seconds by default; hold time 180 Seconds.<br />Update - Information on only ONE path; <br />Notification - When error condition detected<br /> BGP
Allow router to operate in sparse mode and dense mode at the same time.<br />Supports multiple RP's and automatic RP selection for each multicast source.<br />Support auto-RP - bootstrap router (BSR) or statically defined RP's with minimal configurat
Must insure loopback is reachable in the routing table. BGP
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
15. What advantage does multicast offer?
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
Group of BGP routers being configured that have the same update policy.<br />Similar to a 'template'; members then assigned to the peer group.<br /> BGP
The router will not accept a routing update that includes its AS number in the path. BGP
Path Vector - policy based routing protocol.<br />Uses BGP attributes are the 'metric'. <br />Path it decides it based on 'hops' where hop is Autonomous Systems.<br /> BGP
16. Explain CGMP.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
17. After the path selection process - What does BGP do with the route?
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
Places it in the routing table. BGP
Router#(config) ip pim send-rp-announce interface_type scope ttl group-list access-list Multicast
Allow router to operate in sparse mode and dense mode at the same time.<br />Supports multiple RP's and automatic RP selection for each multicast source.<br />Support auto-RP - bootstrap router (BSR) or statically defined RP's with minimal configurat
18. What does IGMPv2 add?
Class D address space<br />First bits are ALWAYS 1110<br />224.0.0.0 - 239.255.255.255<br /> Multicast
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
WM<br />One of three values: <br />IGP - Route is interior to the originating AS. (BGP table shows 'i')<br />EGP - Route learned via EGP. (BGP table shows 'e')<br />Incomplete - Routes origin is unknown - usually when redistributed. (BGP table shows
19. What are some disadvantages of multicast?
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
Works if router has multiple parallel paths to a destination.<br />ONLY affect number of routes in IP routing table not the route selected at best in the BGP table.<br />Will load balance across equal cost paths in EGP session.<br /> BGP
Router#(config) router bgp 1<br />Router#(config-router) neighbor 192.168.1.1 remote-as 1<br />Router#(config-router) network 192.168.0. mask 255.255.255.0<br /> BGP
20. Explain the AS-Path attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
21. Explain the Community attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
22. What are the commands to enable multicast routing on a router?
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
Globally:<br />Router(config)# ip multicast-routing<br />Per Interface:<br />Router(config-if)# ip pim dense-mode<br />Enabling PIM on an interface also enables IGMP operation on that interface.<br /> Multicast
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
23. What are the basic commands to enable BGP - define a BGP peer relationship and advertise a network?
Router#(config) router bgp 1<br />Router#(config-router) neighbor 192.168.1.1 remote-as 1<br />Router#(config-router) network 192.168.0. mask 255.255.255.0<br /> BGP
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
WM<br />One of three values: <br />IGP - Route is interior to the originating AS. (BGP table shows 'i')<br />EGP - Route learned via EGP. (BGP table shows 'e')<br />Incomplete - Routes origin is unknown - usually when redistributed. (BGP table shows
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
24. What is the formula to determine number of links in a full mesh topology?
Links = n(n-1)/2 BGP
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
25. What are the administrative distances of eBGP and iBGP?
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
EBGP = 20<br />iBGP = 200<br /> BGP
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
26. What advantage is there it establishing a neighbor relationship using a loopback interface?
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
The BGP Table<br /><br />Command = show ip bgp BGP
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
Loopback more resilient than physical interfaces. BGP
27. Explain what role IGMP plays.
<img src='9618cf01b9422f541fc213b74a3bd9de.png' /> Multicast
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
28. IOS command to dictate when a leaf router (in PIM-SM) will switch from shared to source tree.
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
Rule: Router must be known by an IGP before it may be advertised by BGP peers.<br />Prevents 'blackholes' when AS is a transit network and not all speaker are running BGP<br />Should be left on it AS is a transit AS and not all routers run BGP.<br />
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
29. IOS command to configure a rendezvous point .
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
Router#(config) ip pim send-rp-announce interface_type scope ttl group-list access-list Multicast
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
Loopback more resilient than physical interfaces. BGP
30. What are the two multicast distribution tree types models and differences?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
31. Explain the way RR handles route updates.
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
ISP passes only default route to AS.<br />ISP passes default route and provider owned select routes to AS.<br />ISP passes all routes to AS.<br /> BGP
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
32. Explain the MED attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
33. What are some of the obstacles with IGMP and multicast in general as it relates to layer 2/switches?
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
R1(config-router)# neighbor 192.168.1.1 next-hop-self<br /><br />Cause each routers outgoing interface that the route traverse wihtin the AS (iBPG peers) to annouce itself as the 'next hop' instead of the next hop into the neighboring AS.<br /><br />
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
When AS has more than one connection to the Internet it is called multihoming.<br />Inbound reliability<br />Better performance by selecting more optimal paths<br />Multihoming can be to one ISP or to several.<br /> BGP
34. What is the signifigance of the neighbor address when establishing BGP neighbor in the context of network that has multiple paths to the neighbor?
The neighbor expects to see the updates from the source address configured in the neighbor statement. BGP
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
Use loopback interface to establish the neighbor. (i.e. peer to a loopback interface)<br />Tell BGP to use the lookback interface as teh source of updates<br /><br />R1(config-router)# neighbor 192.168.1.1 update-source loopback0<br /> BGP
35. What is the hop-by-hop routing paradigm of BGP?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
36. What effect does (S -G) and (* -G) entries have on router CPU?
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
EBGP will only peer to direclty connected neighbors and a loopback is considered one hop away.<br /><br />With eBGP peering to a loopback you must enable eBGP Multihop.<br /><br />R1(config-router)# neighbor 192.168.1.1 ebgp-multihop 2 BGP
37. What does a '*' and '>' mean in the BGP table?
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
Globally:<br />Router(config)# ip multicast-routing<br />Per Interface:<br />Router(config-if)# ip pim dense-mode<br />Enabling PIM on an interface also enables IGMP operation on that interface.<br /> Multicast
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
38. Explain the IGMPv3 membership process and new features.
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
Links = n(n-1)/2 BGP
39. What does BGP use for communication? What advantage does it offer?
Allow router to operate in sparse mode and dense mode at the same time.<br />Supports multiple RP's and automatic RP selection for each multicast source.<br />Support auto-RP - bootstrap router (BSR) or statically defined RP's with minimal configurat
WM<br />One of three values: <br />IGP - Route is interior to the originating AS. (BGP table shows 'i')<br />EGP - Route learned via EGP. (BGP table shows 'e')<br />Incomplete - Routes origin is unknown - usually when redistributed. (BGP table shows
TCP port 179<br />Reliability; uses sliding window<br />Triggered - incremental updates made very efficient<br /> BGP
BPG will find an exact match. BGP
40. What are the 6 BGP Neighbor states?
When not all routers within a transit AS have consistent routing information - due to not running BGP or misconfiguration or BPG speakers. Routing information is advertised but since not all routers within AS can reach the destination traffic is halt
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
ISP passes only default route to AS.<br />ISP passes default route and provider owned select routes to AS.<br />ISP passes all routes to AS.<br /> BGP
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
41. What is one method involving minimal configuration to prevent and multi-homed BGP network from becoming a transit AS?
Using a Distribute List to filter outbound routing updates. BGP
(S -G) - 'S comma G'; Source sending to the group. Typically reflect a source tree but can appear on a shared tree. Traffic forwarded via the shortest path from the source.<br />(* -G) - 'Star comma G'; Any source sending to the group. Traffic forwar
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
Concatenation of the first (high order) 25 bits of the reserved MAC address range with the last (low order)23 bits of the multicast group IP address. 5 bits of overlap allowing for 32 address (2^5) for each multicast MAC address. 25 bits + 23 bits<br
42. What is the multicast IP address space?
This should only be for ISP's<br />An improperly configured AS (that is not meant to be a transit) could inadvertently become one.<br /> BGP
Class D address space<br />First bits are ALWAYS 1110<br />224.0.0.0 - 239.255.255.255<br /> Multicast
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
<img src='9618cf01b9422f541fc213b74a3bd9de.png' /> Multicast
43. How does RPF avoid routing loops?
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
Variable length sequence of path attributes<br />Attribute Type -1 byte flag field - 1 byte type code<br />Attribute Length <br />Attribute Value<br />Attribute flag field = 0000 0000<br />W | O - T | N - P | C<br /> BGP
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
44. How does a host learn about available multicast streams?
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
45. What type of protocol is BGP classified as? What is its decision engine?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
46. How is the BGP network command differ from IGP's?
It actually determines which networks are advertised. BGP
AS-Path<br />Next Hop<br />Origin BGP
Show ip bgp - Shows entire BGP topology database (BGP table)<br /><br />show ip bgp rib-failure - Displays BGP routes not installd into the routing information base (RIB) and reason they were not installed.<br /><br />show ip bgp neighbors - Displays
Rule: Router must be known by an IGP before it may be advertised by BGP peers.<br />Prevents 'blackholes' when AS is a transit network and not all speaker are running BGP<br />Should be left on it AS is a transit AS and not all routers run BGP.<br />
47. What are the 4 categories of BGP attributes and what do they mean?
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
48. Explain the Weight attribute.
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
The router will not accept a routing update that includes its AS number in the path. BGP
Cisco Proprietary - between router and switch<br />'Client/Server': Router = CGMP Server - Switch = CGMP Client<br />When router sees IGMP control message it creates a CGMP packet with the mutlicast MAC + client MAC; sends this to 'All CGMP Devices M
49. Explain the AS format and ranges?
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
Class D address space<br />First bits are ALWAYS 1110<br />224.0.0.0 - 239.255.255.255<br /> Multicast
When using the <span style='font-style:italic;'>classful</span> method - at least one subnet of the classful range must reside in the IP routing table.<br /><br />When using the <span style='font-style:italic;'>classless</span> method the exact subne
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
50. What are the commands to configure a BGP peer group?
(S -G) - 'S comma G'; Source sending to the group. Typically reflect a source tree but can appear on a shared tree. Traffic forwarded via the shortest path from the source.<br />(* -G) - 'Star comma G'; Any source sending to the group. Traffic forwar
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
This should only be for ISP's<br />An improperly configured AS (that is not meant to be a transit) could inadvertently become one.<br /> BGP
'Periodic Flood and Prune.'<br />Initially floods multicast traffic (received on its RPF) to all its PIM neighbors. Traffic that arrives back at the router via a non-RPF is discarded.<br />Prune messages are sent on all non-RPF interfaces and RPF int