SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
CCNP
Start Test
Study First
Subjects
:
cisco
,
it-skills
,
ccnp
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. What does a '*' and '>' mean in the BGP table?
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
0100.5e00.0000 - 0100.5e7f.ffff - IANA reserved. Multicast
2. What is a BGP peer group?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
3. What are the basic commands to enable BGP - define a BGP peer relationship and advertise a network?
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
Router#(config) router bgp 1<br />Router#(config-router) neighbor 192.168.1.1 remote-as 1<br />Router#(config-router) network 192.168.0. mask 255.255.255.0<br /> BGP
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
4. Explain the Community attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
5. How does RPF avoid routing loops?
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
6. IOS command to dictate when a leaf router (in PIM-SM) will switch from shared to source tree.
IANA delegates to Regional Internet Registries (RIRs):<br />ARIN - AfriNIC - APNIC - LACNIC and RIPE NCC<br /> BGP
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
WD<br />Dictates which path is preferred to exit the AS.<br />Higher is is preferred - default is 100 on Cisco.<br />Obviously for this to be relevant there must be multiple exit points for the route.<br />'Influences outbound traffic for an AS'<br /
7. What command used to perform the following:<br />A) Reset all neighbors session ('bounce')<br />B) Soft inbound reset<br />C) Soft outbound reset<br />D) Soft inbound reset of neighbor 10.1.1.1<br /><br />R1# clear ip bgp <br />R1# clear ip bgp soft
Routes learned through IBPG are never propogated to other IBGP speakers.<br /><br />This is a loop prevention mechanism. BGP
EBGP will only peer to direclty connected neighbors and a loopback is considered one hop away.<br /><br />With eBGP peering to a loopback you must enable eBGP Multihop.<br /><br />R1(config-router)# neighbor 192.168.1.1 ebgp-multihop 2 BGP
Allow router to operate in sparse mode and dense mode at the same time.<br />Supports multiple RP's and automatic RP selection for each multicast source.<br />Support auto-RP - bootstrap router (BSR) or statically defined RP's with minimal configurat
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
8. What is the significance of the 8th bit in the MAC address?
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
The is the multicast bit. Multicast
Globally:<br />Router(config)# ip multicast-routing<br />Per Interface:<br />Router(config-if)# ip pim dense-mode<br />Enabling PIM on an interface also enables IGMP operation on that interface.<br /> Multicast
9. What are the administrative distances of eBGP and iBGP?
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
EBGP = 20<br />iBGP = 200<br /> BGP
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
10. What is the command to configure a BGP RR?
'Periodic Flood and Prune.'<br />Initially floods multicast traffic (received on its RPF) to all its PIM neighbors. Traffic that arrives back at the router via a non-RPF is discarded.<br />Prune messages are sent on all non-RPF interfaces and RPF int
This router originated the route. BGP
It actually determines which networks are advertised. BGP
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
11. What is the terminology for BGP route reflector?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
12. What is a BGP black hole and how is it avoided?
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
When not all routers within a transit AS have consistent routing information - due to not running BGP or misconfiguration or BPG speakers. Routing information is advertised but since not all routers within AS can reach the destination traffic is halt
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
'Periodic Flood and Prune.'<br />Initially floods multicast traffic (received on its RPF) to all its PIM neighbors. Traffic that arrives back at the router via a non-RPF is discarded.<br />Prune messages are sent on all non-RPF interfaces and RPF int
13. Name several common local scoped multicast addresses and their purpose.
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
14. What does a 0.0.0.0 signify in the Next Hop column in the BGP Table?
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
This router originated the route. BGP
When AS has more than one connection to the Internet it is called multihoming.<br />Inbound reliability<br />Better performance by selecting more optimal paths<br />Multihoming can be to one ISP or to several.<br /> BGP
It actually determines which networks are advertised. BGP
15. What is the difference between iBGP and eBGP?
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
Concatenation of the first (high order) 25 bits of the reserved MAC address range with the last (low order)23 bits of the multicast group IP address. 5 bits of overlap allowing for 32 address (2^5) for each multicast MAC address. 25 bits + 23 bits<br
WD<br />Dictates which path is preferred to exit the AS.<br />Higher is is preferred - default is 100 on Cisco.<br />Obviously for this to be relevant there must be multiple exit points for the route.<br />'Influences outbound traffic for an AS'<br /
BGP peer BGP
16. Describe how PIM-SM operates.
WM<br /><br />List of AS numbers pre-pended with a list of AS numbers that the route has traversed and the originating AS at the end. 'Path to 192.168.1.0 is (65500 - 65420 - 65874)'<br /><br />This insures a loop-free environment. If BGP receives a
When AS has more than one connection to the Internet it is called multihoming.<br />Inbound reliability<br />Better performance by selecting more optimal paths<br />Multihoming can be to one ISP or to several.<br /> BGP
RFC 2362<br />Pull model - traffic only forwarded to the parts of the network that need it. Sender registers with the RP which is a proxy to group members.<br />Last hop routers to receiver knows the group RP IP address and sends a (* -G) join toward
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
17. Name the Well-known discretionary attributes.
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
Concatenation of the first (high order) 25 bits of the reserved MAC address range with the last (low order)23 bits of the multicast group IP address. 5 bits of overlap allowing for 32 address (2^5) for each multicast MAC address. 25 bits + 23 bits<br
Local preference<br />Atomic Aggregate BGP
18. Explain the MED attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
19. Explain how the multicast routing table is populated.
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
Open - Version - AS - Hold Time - BGP Router ID - Optional Parameters<br />Keepalive - Sent every 60 seconds by default; hold time 180 Seconds.<br />Update - Information on only ONE path; <br />Notification - When error condition detected<br /> BGP
20. Explain the concept of RPF.
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
Router#show ip igmp interface fa0/0<br /> Multicast
Show ip bgp - Shows entire BGP topology database (BGP table)<br /><br />show ip bgp rib-failure - Displays BGP routes not installd into the routing information base (RIB) and reason they were not installed.<br /><br />show ip bgp neighbors - Displays
21. What are the 4 categories of BGP attributes and what do they mean?
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
WD<br />Dictates which path is preferred to exit the AS.<br />Higher is is preferred - default is 100 on Cisco.<br />Obviously for this to be relevant there must be multiple exit points for the route.<br />'Influences outbound traffic for an AS'<br /
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
22. What are the 3 BGP tables and What is in them?
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
'Periodic Flood and Prune.'<br />Initially floods multicast traffic (received on its RPF) to all its PIM neighbors. Traffic that arrives back at the router via a non-RPF is discarded.<br />Prune messages are sent on all non-RPF interfaces and RPF int
23. Explain CGMP.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
24. What special consideration is there when peering to a eBGP neighbor using a loopback? What is the solution to this?
EBGP will only peer to direclty connected neighbors and a loopback is considered one hop away.<br /><br />With eBGP peering to a loopback you must enable eBGP Multihop.<br /><br />R1(config-router)# neighbor 192.168.1.1 ebgp-multihop 2 BGP
Allow router to operate in sparse mode and dense mode at the same time.<br />Supports multiple RP's and automatic RP selection for each multicast source.<br />Support auto-RP - bootstrap router (BSR) or statically defined RP's with minimal configurat
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
Must insure loopback is reachable in the routing table. BGP
25. Explain what role IGMP plays.
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
26. State 3 functions SDR performs?
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
Concatenation of the first (high order) 25 bits of the reserved MAC address range with the last (low order)23 bits of the multicast group IP address. 5 bits of overlap allowing for 32 address (2^5) for each multicast MAC address. 25 bits + 23 bits<br
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast
27. What are three different common ways to perform BGP multihoming with regard to routing table?
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
ISP passes only default route to AS.<br />ISP passes default route and provider owned select routes to AS.<br />ISP passes all routes to AS.<br /> BGP
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
28. What is the command to configure a BGP RR?<br />
The Source and Share Tree models are the working model of how the tree is built; all multicast routing protocols fit into one or both. This is the 'theory' or model.<br />PIM-DM's operational falls in the source tree model and PIM-SM is classified an
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
Default-Network<br />Static route<br /> BGP
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
29. How does Source and Shared Distribution Tree models related to PIM-DM and PIM-SM?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
30. Explain the way RR handles route updates.
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
31. How is the BGP network command differ from IGP's?
WM<br />One of three values: <br />IGP - Route is interior to the originating AS. (BGP table shows 'i')<br />EGP - Route learned via EGP. (BGP table shows 'e')<br />Incomplete - Routes origin is unknown - usually when redistributed. (BGP table shows
It actually determines which networks are advertised. BGP
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
BPG will find an exact match. BGP
32. What is the hop-by-hop routing paradigm of BGP?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
33. Explain the IGMPv3 membership process and new features.
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
Router#(config) ip pim send-rp-announce interface_type scope ttl group-list access-list Multicast
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
34. Name to enhancements to PIM.
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
0100.5e00.0000 - 0100.5e7f.ffff - IANA reserved. Multicast
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
35. Describe how PIM-Sparse-Dense operates.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
36. What advantage does multicast offer?
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
OT<br />Allows the router to 'tag' and thus implement policy based on this tag.<br /> BGP
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
37. What does BGP use for communication? What advantage does it offer?
When using the <span style='font-style:italic;'>classful</span> method - at least one subnet of the classful range must reside in the IP routing table.<br /><br />When using the <span style='font-style:italic;'>classless</span> method the exact subne
Rule: Router must be known by an IGP before it may be advertised by BGP peers.<br />Prevents 'blackholes' when AS is a transit network and not all speaker are running BGP<br />Should be left on it AS is a transit AS and not all routers run BGP.<br />
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
TCP port 179<br />Reliability; uses sliding window<br />Triggered - incremental updates made very efficient<br /> BGP
38. What are the methods to control multicast within the layer 2 domain? What are some benefits & drawbacks of each?
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
EBGP = 20<br />iBGP = 200<br /> BGP
Router#show ip igmp interface fa0/0<br /> Multicast
39. What is the command to enable BPG authentication?
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
40. What entities are responsible for allocating BGP AS numbers?
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
IANA delegates to Regional Internet Registries (RIRs):<br />ARIN - AfriNIC - APNIC - LACNIC and RIPE NCC<br /> BGP
41. What is the signifigance of the neighbor address when establishing BGP neighbor in the context of network that has multiple paths to the neighbor?
AS-Path<br />Next Hop<br />Origin BGP
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
The neighbor expects to see the updates from the source address configured in the neighbor statement. BGP
42. Explain the Origin attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
43. What are the 6 BGP Neighbor states?
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
44. Which IOS command shows what version of IGMP is running?
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
Variable length sequence of path attributes<br />Attribute Type -1 byte flag field - 1 byte type code<br />Attribute Length <br />Attribute Value<br />Attribute flag field = 0000 0000<br />W | O - T | N - P | C<br /> BGP
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
Router#show ip igmp interface fa0/0<br /> Multicast
45. Name 4 verification commands for BGP and what they display?
Show ip bgp - Shows entire BGP topology database (BGP table)<br /><br />show ip bgp rib-failure - Displays BGP routes not installd into the routing information base (RIB) and reason they were not installed.<br /><br />show ip bgp neighbors - Displays
The router will not accept a routing update that includes its AS number in the path. BGP
0100.5e00.0000 - 0100.5e7f.ffff - IANA reserved. Multicast
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
46. What are some disadvantages of multicast?
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
47. Within the layer 3 multicast address space - name 3 reserved scopes and their purpose.
Members leave through attrition; no leave group message. This keep traffic flowing for a period of time even with no group members. Multicast
(S -G) - 'S comma G'; Source sending to the group. Typically reflect a source tree but can appear on a shared tree. Traffic forwarded via the shortest path from the source.<br />(* -G) - 'Star comma G'; Any source sending to the group. Traffic forwar
Router#show ip igmp group<br />Group address - interface - uptime - expires - and last reporter.<br /> Multicast
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
48. What effect will placing a route to null0 have on BGP?
BPG will find an exact match. BGP
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
Router#show ip igmp group<br />Group address - interface - uptime - expires - and last reporter.<br /> Multicast
49. Describe 4 multicast application models and give an example of each?
Router#(config) router bgp 1<br />Router#(config-router) neighbor 192.168.1.1 remote-as 1<br />Router#(config-router) network 192.168.0. mask 255.255.255.0<br /> BGP
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
50. What type of protocol is BGP classified as? What is its decision engine?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183