SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
CCNP
Start Test
Study First
Subjects
:
cisco
,
it-skills
,
ccnp
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. What is the IOS command to check for IGMP group members? What info does it reveal?
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
Using a Distribute List to filter outbound routing updates. BGP
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
Router#show ip igmp group<br />Group address - interface - uptime - expires - and last reporter.<br /> Multicast
2. What does a '*' and '>' mean in the BGP table?
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
3. What command will produce the following output and What is it displaying?<br /><br /><img src='5d3c9233dd205ee4319ef0ac2fc07460.jpg' />
This should only be for ISP's<br />An improperly configured AS (that is not meant to be a transit) could inadvertently become one.<br /> BGP
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
The BGP Table<br /><br />Command = show ip bgp BGP
ISP passes only default route to AS.<br />ISP passes default route and provider owned select routes to AS.<br />ISP passes all routes to AS.<br /> BGP
4. What does a 0.0.0.0 signify in the Next Hop column in the BGP Table?
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
This router originated the route. BGP
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
5. Explain the AS format and ranges?
Members leave through attrition; no leave group message. This keep traffic flowing for a period of time even with no group members. Multicast
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
6. What are two methods of establishing a gateway of last resort?
Default-Network<br />Static route<br /> BGP
Local preference<br />Atomic Aggregate BGP
Places it in the routing table. BGP
(S -G) - 'S comma G'; Source sending to the group. Typically reflect a source tree but can appear on a shared tree. Traffic forwarded via the shortest path from the source.<br />(* -G) - 'Star comma G'; Any source sending to the group. Traffic forwar
7. What is the key difference between how a multicast routing protocol forwards packets versus a unicast routing protocol?
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
The router will not accept a routing update that includes its AS number in the path. BGP
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
8. Explain what role IGMP plays.
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
When AS has more than one connection to the Internet it is called multihoming.<br />Inbound reliability<br />Better performance by selecting more optimal paths<br />Multihoming can be to one ISP or to several.<br /> BGP
Must insure loopback is reachable in the routing table. BGP
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
9. What are some disadvantages of multicast?
'Periodic Flood and Prune.'<br />Initially floods multicast traffic (received on its RPF) to all its PIM neighbors. Traffic that arrives back at the router via a non-RPF is discarded.<br />Prune messages are sent on all non-RPF interfaces and RPF int
TCP port 179<br />Reliability; uses sliding window<br />Triggered - incremental updates made very efficient<br /> BGP
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
10. What is the significance of an AS being a transit AS?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
11. Explain the relationship between MBone - DVMRP - PIM - IGMP - CGMP hosts - routers and switches?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
12. Explain CGMP.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
13. Name what an update message may include.
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
This router originated the route. BGP
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
14. What is a BGP route reflector - What is it purpose?
Use loopback interface to establish the neighbor. (i.e. peer to a loopback interface)<br />Tell BGP to use the lookback interface as teh source of updates<br /><br />R1(config-router)# neighbor 192.168.1.1 update-source loopback0<br /> BGP
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
15. Explain the Weight attribute.
<img src='9618cf01b9422f541fc213b74a3bd9de.png' /> Multicast
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
Router#show ip igmp group<br />Group address - interface - uptime - expires - and last reporter.<br /> Multicast
16. Describe how PIM-Sparse-Dense operates.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
17. What entities are responsible for allocating BGP AS numbers?
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
IANA delegates to Regional Internet Registries (RIRs):<br />ARIN - AfriNIC - APNIC - LACNIC and RIPE NCC<br /> BGP
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
18. Describe how and IGMPv2 host leaves. What is the interaction between host and router look like?
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
Routes learned through IBPG are never propogated to other IBGP speakers.<br /><br />This is a loop prevention mechanism. BGP
Source Tree - Source-based tree's are rooted at the source. Source tree created for each new group. Also called shortest path tree (SPT's). <br />Shared Tree - Single tree that is shared between all sources; single common root called the rendezvous p
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
19. What does PIM use for its multicast routing calculations?
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
This router originated the route. BGP
Show ip bgp - Shows entire BGP topology database (BGP table)<br /><br />show ip bgp rib-failure - Displays BGP routes not installd into the routing information base (RIB) and reason they were not installed.<br /><br />show ip bgp neighbors - Displays
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
20. What is the IBGP Split Horizon rule? What does this accomplish?
Routes learned through IBPG are never propogated to other IBGP speakers.<br /><br />This is a loop prevention mechanism. BGP
BGP peer BGP
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
21. What advantage does multicast offer?
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
Rule: Router must be known by an IGP before it may be advertised by BGP peers.<br />Prevents 'blackholes' when AS is a transit network and not all speaker are running BGP<br />Should be left on it AS is a transit AS and not all routers run BGP.<br />
22. How does a host learn about available multicast streams?
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
Router#(config) ip pim send-rp-announce interface_type scope ttl group-list access-list Multicast
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
23. What is one mechanism that GURANTEES the BGP AS path is loop free?
Use loopback interface to establish the neighbor. (i.e. peer to a loopback interface)<br />Tell BGP to use the lookback interface as teh source of updates<br /><br />R1(config-router)# neighbor 192.168.1.1 update-source loopback0<br /> BGP
EBGP will only peer to direclty connected neighbors and a loopback is considered one hop away.<br /><br />With eBGP peering to a loopback you must enable eBGP Multihop.<br /><br />R1(config-router)# neighbor 192.168.1.1 ebgp-multihop 2 BGP
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
The router will not accept a routing update that includes its AS number in the path. BGP
24. Name the Well-known discretionary attributes.
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
IANA delegates to Regional Internet Registries (RIRs):<br />ARIN - AfriNIC - APNIC - LACNIC and RIPE NCC<br /> BGP
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
Local preference<br />Atomic Aggregate BGP
25. Explain the concept of RPF.
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
0100.5e00.0000 - 0100.5e7f.ffff - IANA reserved. Multicast
OT<br />Allows the router to 'tag' and thus implement policy based on this tag.<br /> BGP
26. Explain the Community attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
27. Name a significant inefficiency with IGMPv1.
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
Members leave through attrition; no leave group message. This keep traffic flowing for a period of time even with no group members. Multicast
EBGP will only peer to direclty connected neighbors and a loopback is considered one hop away.<br /><br />With eBGP peering to a loopback you must enable eBGP Multihop.<br /><br />R1(config-router)# neighbor 192.168.1.1 ebgp-multihop 2 BGP
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
28. What is the signifigance of the neighbor address when establishing BGP neighbor in the context of network that has multiple paths to the neighbor?
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
The neighbor expects to see the updates from the source address configured in the neighbor statement. BGP
Allow router to operate in sparse mode and dense mode at the same time.<br />Supports multiple RP's and automatic RP selection for each multicast source.<br />Support auto-RP - bootstrap router (BSR) or statically defined RP's with minimal configurat
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
29. Name to enhancements to PIM.
The is the multicast bit. Multicast
Default-Network<br />Static route<br /> BGP
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
30. Explain the BGP route decision process? How many routes does it select? Where do they go? Where do the ones go that are not used?
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
Open - Version - AS - Hold Time - BGP Router ID - Optional Parameters<br />Keepalive - Sent every 60 seconds by default; hold time 180 Seconds.<br />Update - Information on only ONE path; <br />Notification - When error condition detected<br /> BGP
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
31. Explain the AS-Path attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
32. What advantage is there it establishing a neighbor relationship using a loopback interface?
R1(config-router)# neighbor 192.168.1.1 next-hop-self<br /><br />Cause each routers outgoing interface that the route traverse wihtin the AS (iBPG peers) to annouce itself as the 'next hop' instead of the next hop into the neighboring AS.<br /><br />
Loopback more resilient than physical interfaces. BGP
When not all routers within a transit AS have consistent routing information - due to not running BGP or misconfiguration or BPG speakers. Routing information is advertised but since not all routers within AS can reach the destination traffic is halt
Using a Distribute List to filter outbound routing updates. BGP
33. What is the full mesh versus partial mesh IBGP and What are the implications of each?
Routes learned through IBPG are never propogated to other IBGP speakers.<br /><br />This is a loop prevention mechanism. BGP
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
Router#(config) ip pim send-rp-announce interface_type scope ttl group-list access-list Multicast
34. How does RPF avoid routing loops?
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
Class D address space<br />First bits are ALWAYS 1110<br />224.0.0.0 - 239.255.255.255<br /> Multicast
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
35. Explain the multicast routing table distribution tree notations.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
36. What are the 4 BGP packet types? What do they contain?
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
Variable length sequence of path attributes<br />Attribute Type -1 byte flag field - 1 byte type code<br />Attribute Length <br />Attribute Value<br />Attribute flag field = 0000 0000<br />W | O - T | N - P | C<br /> BGP
Open - Version - AS - Hold Time - BGP Router ID - Optional Parameters<br />Keepalive - Sent every 60 seconds by default; hold time 180 Seconds.<br />Update - Information on only ONE path; <br />Notification - When error condition detected<br /> BGP
37. Describe how PIM-SM operates.
Using a Distribute List to filter outbound routing updates. BGP
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
RFC 2362<br />Pull model - traffic only forwarded to the parts of the network that need it. Sender registers with the RP which is a proxy to group members.<br />Last hop routers to receiver knows the group RP IP address and sends a (* -G) join toward
38. Explain the Local Preference attribute.<br />
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
39. What command is used to override the Next-Hop attribute of BGP? What does this do and when would you use this?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
40. What are the 6 BGP Neighbor states?
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
41. What is the hop-by-hop routing paradigm of BGP?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
42. How does Source and Shared Distribution Tree models related to PIM-DM and PIM-SM?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
43. Which IOS command shows what version of IGMP is running?
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
Router#show ip igmp interface fa0/0<br /> Multicast
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
44. Explain the Next-Hop attribute. How does this differ from IGP's? In what environment might this be problematic?
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
Variable length sequence of path attributes<br />Attribute Type -1 byte flag field - 1 byte type code<br />Attribute Length <br />Attribute Value<br />Attribute flag field = 0000 0000<br />W | O - T | N - P | C<br /> BGP
45. What does the 'maximum-paths router' command facilitate?
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
When not all routers within a transit AS have consistent routing information - due to not running BGP or misconfiguration or BPG speakers. Routing information is advertised but since not all routers within AS can reach the destination traffic is halt
Works if router has multiple parallel paths to a destination.<br />ONLY affect number of routes in IP routing table not the route selected at best in the BGP table.<br />Will load balance across equal cost paths in EGP session.<br /> BGP
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
46. Describe 4 multicast application models and give an example of each?
Class D address space<br />First bits are ALWAYS 1110<br />224.0.0.0 - 239.255.255.255<br /> Multicast
Router#(config) ip pim send-rp-announce interface_type scope ttl group-list access-list Multicast
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
47. State 3 functions SDR performs?
The router will not accept a routing update that includes its AS number in the path. BGP
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast
Use loopback interface to establish the neighbor. (i.e. peer to a loopback interface)<br />Tell BGP to use the lookback interface as teh source of updates<br /><br />R1(config-router)# neighbor 192.168.1.1 update-source loopback0<br /> BGP
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
48. What effect does (S -G) and (* -G) entries have on router CPU?
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast
Open - Version - AS - Hold Time - BGP Router ID - Optional Parameters<br />Keepalive - Sent every 60 seconds by default; hold time 180 Seconds.<br />Update - Information on only ONE path; <br />Notification - When error condition detected<br /> BGP
When not all routers within a transit AS have consistent routing information - due to not running BGP or misconfiguration or BPG speakers. Routing information is advertised but since not all routers within AS can reach the destination traffic is halt
49. Name several common local scoped multicast addresses and their purpose.
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
Group of BGP routers being configured that have the same update policy.<br />Similar to a 'template'; members then assigned to the peer group.<br /> BGP
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
50. IOS command to configure router to be a member of an IGMP group or statically connected member.
Must insure loopback is reachable in the routing table. BGP
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
Links = n(n-1)/2 BGP