SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
CCNP
Start Test
Study First
Subjects
:
cisco
,
it-skills
,
ccnp
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Explain how the multicast routing table is populated.
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
Variable length sequence of path attributes<br />Attribute Type -1 byte flag field - 1 byte type code<br />Attribute Length <br />Attribute Value<br />Attribute flag field = 0000 0000<br />W | O - T | N - P | C<br /> BGP
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
2. What command will produce the following output and What is it displaying?<br /><br /><img src='5d3c9233dd205ee4319ef0ac2fc07460.jpg' />
The BGP Table<br /><br />Command = show ip bgp BGP
Router#(config) router bgp 1<br />Router#(config-router) neighbor 192.168.1.1 remote-as 1<br />Router#(config-router) network 192.168.0. mask 255.255.255.0<br /> BGP
(S -G) - 'S comma G'; Source sending to the group. Typically reflect a source tree but can appear on a shared tree. Traffic forwarded via the shortest path from the source.<br />(* -G) - 'Star comma G'; Any source sending to the group. Traffic forwar
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
3. What does BGP use for communication? What advantage does it offer?
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
TCP port 179<br />Reliability; uses sliding window<br />Triggered - incremental updates made very efficient<br /> BGP
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
4. How does RPF avoid routing loops?
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
5. What are some of the obstacles with IGMP and multicast in general as it relates to layer 2/switches?
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
Links = n(n-1)/2 BGP
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
6. Name 6 multicast routing protocols.
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
Cisco Proprietary - between router and switch<br />'Client/Server': Router = CGMP Server - Switch = CGMP Client<br />When router sees IGMP control message it creates a CGMP packet with the mutlicast MAC + client MAC; sends this to 'All CGMP Devices M
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
Variable length sequence of path attributes<br />Attribute Type -1 byte flag field - 1 byte type code<br />Attribute Length <br />Attribute Value<br />Attribute flag field = 0000 0000<br />W | O - T | N - P | C<br /> BGP
7. When creating a BGP neighbor relationship to a loopback interface what must be remember in the context of routing?
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
WD<br />Dictates which path is preferred to exit the AS.<br />Higher is is preferred - default is 100 on Cisco.<br />Obviously for this to be relevant there must be multiple exit points for the route.<br />'Influences outbound traffic for an AS'<br /
Must insure loopback is reachable in the routing table. BGP
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
8. What is a BGP peer group?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
9. How does Source and Shared Distribution Tree models related to PIM-DM and PIM-SM?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
10. What are the commands to enable multicast routing on a router?
Globally:<br />Router(config)# ip multicast-routing<br />Per Interface:<br />Router(config-if)# ip pim dense-mode<br />Enabling PIM on an interface also enables IGMP operation on that interface.<br /> Multicast
Router#(config) ip pim send-rp-announce interface_type scope ttl group-list access-list Multicast
(S -G) - 'S comma G'; Source sending to the group. Typically reflect a source tree but can appear on a shared tree. Traffic forwarded via the shortest path from the source.<br />(* -G) - 'Star comma G'; Any source sending to the group. Traffic forwar
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
11. Explain the MED attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
12. What does a 0.0.0.0 signify in the Next Hop column in the BGP Table?
Rule: Router must be known by an IGP before it may be advertised by BGP peers.<br />Prevents 'blackholes' when AS is a transit network and not all speaker are running BGP<br />Should be left on it AS is a transit AS and not all routers run BGP.<br />
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
This router originated the route. BGP
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
13. Explain CGMP.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
14. IOS command to dictate when a leaf router (in PIM-SM) will switch from shared to source tree.
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
OT<br />Allows the router to 'tag' and thus implement policy based on this tag.<br /> BGP
BPG will find an exact match. BGP
15. Explain what role IGMP plays.
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
Show ip bgp - Shows entire BGP topology database (BGP table)<br /><br />show ip bgp rib-failure - Displays BGP routes not installd into the routing information base (RIB) and reason they were not installed.<br /><br />show ip bgp neighbors - Displays
When using the <span style='font-style:italic;'>classful</span> method - at least one subnet of the classful range must reside in the IP routing table.<br /><br />When using the <span style='font-style:italic;'>classless</span> method the exact subne
16. What is a BGP route reflector - What is it purpose?
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
ISP passes only default route to AS.<br />ISP passes default route and provider owned select routes to AS.<br />ISP passes all routes to AS.<br /> BGP
17. What is the full mesh versus partial mesh IBGP and What are the implications of each?
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
18. How does a host learn about available multicast streams?
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
RFC 2362<br />Pull model - traffic only forwarded to the parts of the network that need it. Sender registers with the RP which is a proxy to group members.<br />Last hop routers to receiver knows the group RP IP address and sends a (* -G) join toward
19. Explain the AS-Path attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
20. What is the IBGP Split Horizon rule? What does this accomplish?
WD<br />Dictates which path is preferred to exit the AS.<br />Higher is is preferred - default is 100 on Cisco.<br />Obviously for this to be relevant there must be multiple exit points for the route.<br />'Influences outbound traffic for an AS'<br /
BPG will find an exact match. BGP
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
Routes learned through IBPG are never propogated to other IBGP speakers.<br /><br />This is a loop prevention mechanism. BGP
21. Describe how PIM-Sparse-Dense operates.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
22. What are three different common ways to perform BGP multihoming with regard to routing table?
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
ISP passes only default route to AS.<br />ISP passes default route and provider owned select routes to AS.<br />ISP passes all routes to AS.<br /> BGP
Open - Version - AS - Hold Time - BGP Router ID - Optional Parameters<br />Keepalive - Sent every 60 seconds by default; hold time 180 Seconds.<br />Update - Information on only ONE path; <br />Notification - When error condition detected<br /> BGP
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
23. Describe how PIM-SM operates.
Using a Distribute List to filter outbound routing updates. BGP
RFC 2362<br />Pull model - traffic only forwarded to the parts of the network that need it. Sender registers with the RP which is a proxy to group members.<br />Last hop routers to receiver knows the group RP IP address and sends a (* -G) join toward
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
This should only be for ISP's<br />An improperly configured AS (that is not meant to be a transit) could inadvertently become one.<br /> BGP
24. What are the 3 BGP tables and What is in them?
Cisco Proprietary - between router and switch<br />'Client/Server': Router = CGMP Server - Switch = CGMP Client<br />When router sees IGMP control message it creates a CGMP packet with the mutlicast MAC + client MAC; sends this to 'All CGMP Devices M
WM<br />One of three values: <br />IGP - Route is interior to the originating AS. (BGP table shows 'i')<br />EGP - Route learned via EGP. (BGP table shows 'e')<br />Incomplete - Routes origin is unknown - usually when redistributed. (BGP table shows
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
25. What is the command to configure a BGP RR?
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
The BGP Table<br /><br />Command = show ip bgp BGP
R1(config-router)# neighbor 192.168.1.1 next-hop-self<br /><br />Cause each routers outgoing interface that the route traverse wihtin the AS (iBPG peers) to annouce itself as the 'next hop' instead of the next hop into the neighboring AS.<br /><br />
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
26. Explain the IGMPv3 membership process and new features.
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
'Periodic Flood and Prune.'<br />Initially floods multicast traffic (received on its RPF) to all its PIM neighbors. Traffic that arrives back at the router via a non-RPF is discarded.<br />Prune messages are sent on all non-RPF interfaces and RPF int
27. What command used to perform the following:<br />A) Reset all neighbors session ('bounce')<br />B) Soft inbound reset<br />C) Soft outbound reset<br />D) Soft inbound reset of neighbor 10.1.1.1<br /><br />R1# clear ip bgp <br />R1# clear ip bgp soft
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
The neighbor expects to see the updates from the source address configured in the neighbor statement. BGP
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
28. Describe how PIM-DM operates.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
29. What does IGMPv2 add?
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
Use loopback interface to establish the neighbor. (i.e. peer to a loopback interface)<br />Tell BGP to use the lookback interface as teh source of updates<br /><br />R1(config-router)# neighbor 192.168.1.1 update-source loopback0<br /> BGP
Router#(config) ip pim send-rp-announce interface_type scope ttl group-list access-list Multicast
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
30. Name the Well-known discretionary attributes.
Default-Network<br />Static route<br /> BGP
The Source and Share Tree models are the working model of how the tree is built; all multicast routing protocols fit into one or both. This is the 'theory' or model.<br />PIM-DM's operational falls in the source tree model and PIM-SM is classified an
This router originated the route. BGP
Local preference<br />Atomic Aggregate BGP
31. What is the significance of the 8th bit in the MAC address?
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
(S -G) - 'S comma G'; Source sending to the group. Typically reflect a source tree but can appear on a shared tree. Traffic forwarded via the shortest path from the source.<br />(* -G) - 'Star comma G'; Any source sending to the group. Traffic forwar
WM<br /><br />List of AS numbers pre-pended with a list of AS numbers that the route has traversed and the originating AS at the end. 'Path to 192.168.1.0 is (65500 - 65420 - 65874)'<br /><br />This insures a loop-free environment. If BGP receives a
The is the multicast bit. Multicast
32. What are some disadvantages of multicast?
'Periodic Flood and Prune.'<br />Initially floods multicast traffic (received on its RPF) to all its PIM neighbors. Traffic that arrives back at the router via a non-RPF is discarded.<br />Prune messages are sent on all non-RPF interfaces and RPF int
WM<br /><br />List of AS numbers pre-pended with a list of AS numbers that the route has traversed and the originating AS at the end. 'Path to 192.168.1.0 is (65500 - 65420 - 65874)'<br /><br />This insures a loop-free environment. If BGP receives a
WM<br />One of three values: <br />IGP - Route is interior to the originating AS. (BGP table shows 'i')<br />EGP - Route learned via EGP. (BGP table shows 'e')<br />Incomplete - Routes origin is unknown - usually when redistributed. (BGP table shows
Most applications rely on UDP<br />Security issues<br />Out of order delivery & duplicate packets are a possibility during topology changes.<br />Lack of windowing/congestion control.<br /> Multicast
33. Explain the AS format and ranges?
WM<br />One of three values: <br />IGP - Route is interior to the originating AS. (BGP table shows 'i')<br />EGP - Route learned via EGP. (BGP table shows 'e')<br />Incomplete - Routes origin is unknown - usually when redistributed. (BGP table shows
The is the multicast bit. Multicast
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
This should only be for ISP's<br />An improperly configured AS (that is not meant to be a transit) could inadvertently become one.<br /> BGP
34. Name to enhancements to PIM.
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
WM<br /><br />List of AS numbers pre-pended with a list of AS numbers that the route has traversed and the originating AS at the end. 'Path to 192.168.1.0 is (65500 - 65420 - 65874)'<br /><br />This insures a loop-free environment. If BGP receives a
35. Describe how and IGMPv2 host leaves. What is the interaction between host and router look like?
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
The BGP Table<br /><br />Command = show ip bgp BGP
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
36. What advantage does multicast offer?
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
37. Explain the Community attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
38. Explain the BGP route decision process? How many routes does it select? Where do they go? Where do the ones go that are not used?
Local preference<br />Atomic Aggregate BGP
BGP peer BGP
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
39. What are the commands to configure a BGP peer group?
When not all routers within a transit AS have consistent routing information - due to not running BGP or misconfiguration or BPG speakers. Routing information is advertised but since not all routers within AS can reach the destination traffic is halt
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
Show ip bgp - Shows entire BGP topology database (BGP table)<br /><br />show ip bgp rib-failure - Displays BGP routes not installd into the routing information base (RIB) and reason they were not installed.<br /><br />show ip bgp neighbors - Displays
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
40. What is a neighbor call in BGP?
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
RFC 2362<br />Pull model - traffic only forwarded to the parts of the network that need it. Sender registers with the RP which is a proxy to group members.<br />Last hop routers to receiver knows the group RP IP address and sends a (* -G) join toward
BGP peer BGP
It actually determines which networks are advertised. BGP
41. Describe 4 multicast application models and give an example of each?
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
42. What is the command to enable BPG authentication?
AS-Path<br />Next Hop<br />Origin BGP
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
Allow router to operate in sparse mode and dense mode at the same time.<br />Supports multiple RP's and automatic RP selection for each multicast source.<br />Support auto-RP - bootstrap router (BSR) or statically defined RP's with minimal configurat
43. Which IOS command shows what version of IGMP is running?
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
Router#show ip igmp interface fa0/0<br /> Multicast
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
44. Explain the concept of RPF.
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
Router#show ip igmp group<br />Group address - interface - uptime - expires - and last reporter.<br /> Multicast
45. What config would be used to configured an outbound BGP distribute list to block all routes from being advertised except ones from 192.168.0.0 /24 network to neighbors 10.1.1.1 and 10.1.1.2?
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
Rule: Router must be known by an IGP before it may be advertised by BGP peers.<br />Prevents 'blackholes' when AS is a transit network and not all speaker are running BGP<br />Should be left on it AS is a transit AS and not all routers run BGP.<br />
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
46. Name several common local scoped multicast addresses and their purpose.
Router#show ip igmp interface fa0/0<br /> Multicast
Concatenation of the first (high order) 25 bits of the reserved MAC address range with the last (low order)23 bits of the multicast group IP address. 5 bits of overlap allowing for 32 address (2^5) for each multicast MAC address. 25 bits + 23 bits<br
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
47. What does PIM use for its multicast routing calculations?
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
WD<br />Dictates which path is preferred to exit the AS.<br />Higher is is preferred - default is 100 on Cisco.<br />Obviously for this to be relevant there must be multiple exit points for the route.<br />'Influences outbound traffic for an AS'<br /
Local preference<br />Atomic Aggregate BGP
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
48. What are the administrative distances of eBGP and iBGP?
EBGP = 20<br />iBGP = 200<br /> BGP
The Source and Share Tree models are the working model of how the tree is built; all multicast routing protocols fit into one or both. This is the 'theory' or model.<br />PIM-DM's operational falls in the source tree model and PIM-SM is classified an
OT<br />Allows the router to 'tag' and thus implement policy based on this tag.<br /> BGP
Default-Network<br />Static route<br /> BGP
49. What is BGP multihoming and why would you want to do it?
When AS has more than one connection to the Internet it is called multihoming.<br />Inbound reliability<br />Better performance by selecting more optimal paths<br />Multihoming can be to one ISP or to several.<br /> BGP
Must insure loopback is reachable in the routing table. BGP
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
The neighbor expects to see the updates from the source address configured in the neighbor statement. BGP
50. Within the layer 3 multicast address space - name 3 reserved scopes and their purpose.
BPG will find an exact match. BGP
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
Cisco Proprietary - between router and switch<br />'Client/Server': Router = CGMP Server - Switch = CGMP Client<br />When router sees IGMP control message it creates a CGMP packet with the mutlicast MAC + client MAC; sends this to 'All CGMP Devices M
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast