SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
CCNP
Start Test
Study First
Subjects
:
cisco
,
it-skills
,
ccnp
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. What does a '*' and '>' mean in the BGP table?
EBGP will only peer to direclty connected neighbors and a loopback is considered one hop away.<br /><br />With eBGP peering to a loopback you must enable eBGP Multihop.<br /><br />R1(config-router)# neighbor 192.168.1.1 ebgp-multihop 2 BGP
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
Loopback more resilient than physical interfaces. BGP
2. What are the commands to enable multicast routing on a router?
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
Globally:<br />Router(config)# ip multicast-routing<br />Per Interface:<br />Router(config-if)# ip pim dense-mode<br />Enabling PIM on an interface also enables IGMP operation on that interface.<br /> Multicast
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
3. What special consideration is there when peering to a eBGP neighbor using a loopback? What is the solution to this?
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
0100.5e00.0000 - 0100.5e7f.ffff - IANA reserved. Multicast
EBGP will only peer to direclty connected neighbors and a loopback is considered one hop away.<br /><br />With eBGP peering to a loopback you must enable eBGP Multihop.<br /><br />R1(config-router)# neighbor 192.168.1.1 ebgp-multihop 2 BGP
Router#show ip igmp interface fa0/0<br /> Multicast
4. What is the command to enable BPG authentication?
BGP specifies that it can advertise to its peers in neighboring AS's only routes that it uses.<br />BGP cannot influence how a neighboring AS will route your traffic BUT it can influence how your traffic gets to the neighboring AS. <br /> BGP
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
Router#show ip igmp interface fa0/0<br /> Multicast
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
5. What is the IBGP Split Horizon rule? What does this accomplish?
Routes learned through IBPG are never propogated to other IBGP speakers.<br /><br />This is a loop prevention mechanism. BGP
This router originated the route. BGP
This should only be for ISP's<br />An improperly configured AS (that is not meant to be a transit) could inadvertently become one.<br /> BGP
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
6. Name to enhancements to PIM.
Must insure loopback is reachable in the routing table. BGP
BPG will find an exact match. BGP
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
7. What does a 0.0.0.0 signify in the Next Hop column in the BGP Table?
Places it in the routing table. BGP
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
This router originated the route. BGP
TCP port 179<br />Reliability; uses sliding window<br />Triggered - incremental updates made very efficient<br /> BGP
8. What are the basic commands to enable BGP - define a BGP peer relationship and advertise a network?
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
Router#(config) router bgp 1<br />Router#(config-router) neighbor 192.168.1.1 remote-as 1<br />Router#(config-router) network 192.168.0. mask 255.255.255.0<br /> BGP
ISP passes only default route to AS.<br />ISP passes default route and provider owned select routes to AS.<br />ISP passes all routes to AS.<br /> BGP
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
9. What is the IOS command to check for IGMP group members? What info does it reveal?
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
Router#show ip igmp group<br />Group address - interface - uptime - expires - and last reporter.<br /> Multicast
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
10. What config would be used to configured an outbound BGP distribute list to block all routes from being advertised except ones from 192.168.0.0 /24 network to neighbors 10.1.1.1 and 10.1.1.2?
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
Rule: Router must be known by an IGP before it may be advertised by BGP peers.<br />Prevents 'blackholes' when AS is a transit network and not all speaker are running BGP<br />Should be left on it AS is a transit AS and not all routers run BGP.<br />
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
11. What are the administrative distances of eBGP and iBGP?
EBGP = 20<br />iBGP = 200<br /> BGP
Router#show ip igmp group<br />Group address - interface - uptime - expires - and last reporter.<br /> Multicast
BGP peer BGP
Links = n(n-1)/2 BGP
12. Explain the Next-Hop attribute. How does this differ from IGP's? In what environment might this be problematic?
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
The is the multicast bit. Multicast
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
13. What type of protocol is BGP classified as? What is its decision engine?
14. When creating a BGP neighbor relationship to a loopback interface what must be remember in the context of routing?
Must insure loopback is reachable in the routing table. BGP
TCP port 179<br />Reliability; uses sliding window<br />Triggered - incremental updates made very efficient<br /> BGP
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
15. Name a significant inefficiency with IGMPv1.
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
Members leave through attrition; no leave group message. This keep traffic flowing for a period of time even with no group members. Multicast
The is the multicast bit. Multicast
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
16. Describe how PIM-SM operates.
BGP peer BGP
Source Tree - Source-based tree's are rooted at the source. Source tree created for each new group. Also called shortest path tree (SPT's). <br />Shared Tree - Single tree that is shared between all sources; single common root called the rendezvous p
RFC 2362<br />Pull model - traffic only forwarded to the parts of the network that need it. Sender registers with the RP which is a proxy to group members.<br />Last hop routers to receiver knows the group RP IP address and sends a (* -G) join toward
Loopback more resilient than physical interfaces. BGP
17. What is the hop-by-hop routing paradigm of BGP?
18. What advantage does multicast offer?
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
RFC 2362<br />Pull model - traffic only forwarded to the parts of the network that need it. Sender registers with the RP which is a proxy to group members.<br />Last hop routers to receiver knows the group RP IP address and sends a (* -G) join toward
Use loopback interface to establish the neighbor. (i.e. peer to a loopback interface)<br />Tell BGP to use the lookback interface as teh source of updates<br /><br />R1(config-router)# neighbor 192.168.1.1 update-source loopback0<br /> BGP
Loopback more resilient than physical interfaces. BGP
19. What effect will placing a route to null0 have on BGP?
Cisco Proprietary - between router and switch<br />'Client/Server': Router = CGMP Server - Switch = CGMP Client<br />When router sees IGMP control message it creates a CGMP packet with the mutlicast MAC + client MAC; sends this to 'All CGMP Devices M
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
BPG will find an exact match. BGP
20. What is one method involving minimal configuration to prevent and multi-homed BGP network from becoming a transit AS?
Using a Distribute List to filter outbound routing updates. BGP
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
'Periodic Flood and Prune.'<br />Initially floods multicast traffic (received on its RPF) to all its PIM neighbors. Traffic that arrives back at the router via a non-RPF is discarded.<br />Prune messages are sent on all non-RPF interfaces and RPF int
Must insure loopback is reachable in the routing table. BGP
21. Explain the BGP route decision process? How many routes does it select? Where do they go? Where do the ones go that are not used?
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
AS-Path<br />Next Hop<br />Origin BGP
Source Tree - Source-based tree's are rooted at the source. Source tree created for each new group. Also called shortest path tree (SPT's). <br />Shared Tree - Single tree that is shared between all sources; single common root called the rendezvous p
22. Explain the AS-Path attribute.
23. What is the key difference between how a multicast routing protocol forwards packets versus a unicast routing protocol?
Cisco Proprietary - between router and switch<br />'Client/Server': Router = CGMP Server - Switch = CGMP Client<br />When router sees IGMP control message it creates a CGMP packet with the mutlicast MAC + client MAC; sends this to 'All CGMP Devices M
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
24. What is a BGP peer group?
25. IOS command to dictate when a leaf router (in PIM-SM) will switch from shared to source tree.
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
R1(config-router)# neighbor 192.168.1.1 next-hop-self<br /><br />Cause each routers outgoing interface that the route traverse wihtin the AS (iBPG peers) to annouce itself as the 'next hop' instead of the next hop into the neighboring AS.<br /><br />
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
26. After the path selection process - What does BGP do with the route?
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
Places it in the routing table. BGP
27. Explain the Weight attribute.
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
Use loopback interface to establish the neighbor. (i.e. peer to a loopback interface)<br />Tell BGP to use the lookback interface as teh source of updates<br /><br />R1(config-router)# neighbor 192.168.1.1 update-source loopback0<br /> BGP
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
28. Explain the AS format and ranges?
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
WM<br /><br />List of AS numbers pre-pended with a list of AS numbers that the route has traversed and the originating AS at the end. 'Path to 192.168.1.0 is (65500 - 65420 - 65874)'<br /><br />This insures a loop-free environment. If BGP receives a
Default-Network<br />Static route<br /> BGP
29. IOS command to configure router to be a member of an IGMP group or statically connected member.
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
Globally:<br />Router(config)# ip multicast-routing<br />Per Interface:<br />Router(config-if)# ip pim dense-mode<br />Enabling PIM on an interface also enables IGMP operation on that interface.<br /> Multicast
AS-Path<br />Next Hop<br />Origin BGP
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
30. What is the significance of the 8th bit in the MAC address?
'Periodic Flood and Prune.'<br />Initially floods multicast traffic (received on its RPF) to all its PIM neighbors. Traffic that arrives back at the router via a non-RPF is discarded.<br />Prune messages are sent on all non-RPF interfaces and RPF int
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
The is the multicast bit. Multicast
31. What is the multicast IP address space?
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
Class D address space<br />First bits are ALWAYS 1110<br />224.0.0.0 - 239.255.255.255<br /> Multicast
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
32. What is the BGP Synchronization requirement and What does is prevent? When should it be left disabled? When should it be enabled?
33. How is the BGP network command differ from IGP's?
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
It actually determines which networks are advertised. BGP
The router will not accept a routing update that includes its AS number in the path. BGP
34. Name the Well-known discretionary attributes.
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
Loopback more resilient than physical interfaces. BGP
Local preference<br />Atomic Aggregate BGP
35. What does IGMPv2 add?
IANA delegates to Regional Internet Registries (RIRs):<br />ARIN - AfriNIC - APNIC - LACNIC and RIPE NCC<br /> BGP
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
36. Name the Well-known mandatory attributes.
AS-Path<br />Next Hop<br />Origin BGP
TCP port 179<br />Reliability; uses sliding window<br />Triggered - incremental updates made very efficient<br /> BGP
Class D address space<br />First bits are ALWAYS 1110<br />224.0.0.0 - 239.255.255.255<br /> Multicast
Use loopback interface to establish the neighbor. (i.e. peer to a loopback interface)<br />Tell BGP to use the lookback interface as teh source of updates<br /><br />R1(config-router)# neighbor 192.168.1.1 update-source loopback0<br /> BGP
37. What are some of the obstacles with IGMP and multicast in general as it relates to layer 2/switches?
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
IGMP is a layer 3 protocol<br />Switches treat multicast just like broadcast (forward out all ports except the one one which is was received)<br />By definition a pure layer 2 devices do not have a mechanism to see IGMP packets or facilitate the rela
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
38. How does Source and Shared Distribution Tree models related to PIM-DM and PIM-SM?
39. What effect does (S -G) and (* -G) entries have on router CPU?
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
The BGP Table<br /><br />Command = show ip bgp BGP
40. What is the formula to determine number of links in a full mesh topology?
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
<img src='9618cf01b9422f541fc213b74a3bd9de.png' /> Multicast
Group of BGP routers being configured that have the same update policy.<br />Similar to a 'template'; members then assigned to the peer group.<br /> BGP
Links = n(n-1)/2 BGP
41. What is the layer 2 multicast address and how is it formed? What potential problem is there with this?
Router#(config) router bgp 1<br />Router#(config-router) neighbor 192.168.1.1 remote-as 1<br />Router#(config-router) network 192.168.0. mask 255.255.255.0<br /> BGP
<img src='9618cf01b9422f541fc213b74a3bd9de.png' /> Multicast
Concatenation of the first (high order) 25 bits of the reserved MAC address range with the last (low order)23 bits of the multicast group IP address. 5 bits of overlap allowing for 32 address (2^5) for each multicast MAC address. 25 bits + 23 bits<br
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
42. What is the full mesh versus partial mesh IBGP and What are the implications of each?
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
ISP passes only default route to AS.<br />ISP passes default route and provider owned select routes to AS.<br />ISP passes all routes to AS.<br /> BGP
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
This router originated the route. BGP
43. Explain the contents of the BGP update message.
Variable length sequence of path attributes<br />Attribute Type -1 byte flag field - 1 byte type code<br />Attribute Length <br />Attribute Value<br />Attribute flag field = 0000 0000<br />W | O - T | N - P | C<br /> BGP
ISP passes only default route to AS.<br />ISP passes default route and provider owned select routes to AS.<br />ISP passes all routes to AS.<br /> BGP
R1(config-router)# neighbor 192.168.1.1 next-hop-self<br /><br />Cause each routers outgoing interface that the route traverse wihtin the AS (iBPG peers) to annouce itself as the 'next hop' instead of the next hop into the neighboring AS.<br /><br />
Local preference<br />Atomic Aggregate BGP
44. State 3 functions SDR performs?
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast
Path Vector - policy based routing protocol.<br />Uses BGP attributes are the 'metric'. <br />Path it decides it based on 'hops' where hop is Autonomous Systems.<br /> BGP
Globally:<br />Router(config)# ip multicast-routing<br />Per Interface:<br />Router(config-if)# ip pim dense-mode<br />Enabling PIM on an interface also enables IGMP operation on that interface.<br /> Multicast
This should only be for ISP's<br />An improperly configured AS (that is not meant to be a transit) could inadvertently become one.<br /> BGP
45. What is the solution to establishing neighbor relationships when multiple paths exist? What are the command to establish this? What command to tell R1 to use its loopback0 interface as the update source neighbor 192.168.1.1.
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
The router will not accept a routing update that includes its AS number in the path. BGP
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
Use loopback interface to establish the neighbor. (i.e. peer to a loopback interface)<br />Tell BGP to use the lookback interface as teh source of updates<br /><br />R1(config-router)# neighbor 192.168.1.1 update-source loopback0<br /> BGP
46. What are the commands to configure a BGP peer group?
Works if router has multiple parallel paths to a destination.<br />ONLY affect number of routes in IP routing table not the route selected at best in the BGP table.<br />Will load balance across equal cost paths in EGP session.<br /> BGP
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
47. What advantage is there it establishing a neighbor relationship using a loopback interface?
Links = n(n-1)/2 BGP
Loopback more resilient than physical interfaces. BGP
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
48. Explain the way RR handles route updates.
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
Local preference<br />Atomic Aggregate BGP
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
49. Explain the MED attribute.
50. Name what an update message may include.
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
EBGP will only peer to direclty connected neighbors and a loopback is considered one hop away.<br /><br />With eBGP peering to a loopback you must enable eBGP Multihop.<br /><br />R1(config-router)# neighbor 192.168.1.1 ebgp-multihop 2 BGP
<img src='9618cf01b9422f541fc213b74a3bd9de.png' /> Multicast