SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
CCNP
Start Test
Study First
Subjects
:
cisco
,
it-skills
,
ccnp
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. What are the 6 BGP Neighbor states?
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
The router will not accept a routing update that includes its AS number in the path. BGP
Loopback more resilient than physical interfaces. BGP
2. Explain the Community attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
3. What is BGP multihoming and why would you want to do it?
When AS has more than one connection to the Internet it is called multihoming.<br />Inbound reliability<br />Better performance by selecting more optimal paths<br />Multihoming can be to one ISP or to several.<br /> BGP
(S -G) - 'S comma G'; Source sending to the group. Typically reflect a source tree but can appear on a shared tree. Traffic forwarded via the shortest path from the source.<br />(* -G) - 'Star comma G'; Any source sending to the group. Traffic forwar
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
The router will not accept a routing update that includes its AS number in the path. BGP
4. What are the commands to enable multicast routing on a router?
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
Globally:<br />Router(config)# ip multicast-routing<br />Per Interface:<br />Router(config-if)# ip pim dense-mode<br />Enabling PIM on an interface also enables IGMP operation on that interface.<br /> Multicast
5. What is the difference between iBGP and eBGP?
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
6. Explain the path selection process for BGP? What is the order and what preference does it take?
O<br />Cisco only.<br />Routes with higher weight are preferred (0 - 65535) . Paths that the router originates have 32768; other paths have default of 0.<br /> BGP
EBGP = 20<br />iBGP = 200<br /> BGP
1. Weight - Administrative preference (Highest)<br /><br />2. Local Preference - Communicated between peers within AS (Highest)<br /><br />3. Self-originated - Prefer path originated locally (True)<br /><br />4. AS Path - Minimize AS hops (Shortest)<
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
7. What are the methods to control multicast within the layer 2 domain? What are some benefits & drawbacks of each?
The router will not accept a routing update that includes its AS number in the path. BGP
Routes learned through IBPG are never propogated to other IBGP speakers.<br /><br />This is a loop prevention mechanism. BGP
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
EBGP = 20<br />iBGP = 200<br /> BGP
8. How does Source and Shared Distribution Tree models related to PIM-DM and PIM-SM?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
9. What does PIM use for its multicast routing calculations?
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
10. Name to enhancements to PIM.
Bidirection PIM mode - designed for many to many applications.<br />Source Specific Multicast (SSM) ; builds only source specific shortest path trees.<br /> Multicast
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
11. How does a host learn about available multicast streams?
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
12. Explain the MED attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
13. What are the 3 BGP tables and What is in them?
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
14. Explain the way RR handles route updates.
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
Allow router to operate in sparse mode and dense mode at the same time.<br />Supports multiple RP's and automatic RP selection for each multicast source.<br />Support auto-RP - bootstrap router (BSR) or statically defined RP's with minimal configurat
This should only be for ISP's<br />An improperly configured AS (that is not meant to be a transit) could inadvertently become one.<br /> BGP
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
15. Name 6 multicast routing protocols.
Router#(config) ip pim spt-threshold {rate | infinity} [group-list access-list] Multicast
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
Contains information on ONE path only<br /><br />Withdrawn routes - List of IP prefixes for routes being withdrawn.<br />Path attributes - AS-Path - etc.<br />Network layer reachability information - List of IP prefixes reachable by this path. BGP
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
16. What entities are responsible for allocating BGP AS numbers?
OT<br />Allows the router to 'tag' and thus implement policy based on this tag.<br /> BGP
IANA delegates to Regional Internet Registries (RIRs):<br />ARIN - AfriNIC - APNIC - LACNIC and RIPE NCC<br /> BGP
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
Works if router has multiple parallel paths to a destination.<br />ONLY affect number of routes in IP routing table not the route selected at best in the BGP table.<br />Will load balance across equal cost paths in EGP session.<br /> BGP
17. What is the hop-by-hop routing paradigm of BGP?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
18. Explain the Next-Hop attribute. How does this differ from IGP's? In what environment might this be problematic?
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
Rule: Router must be known by an IGP before it may be advertised by BGP peers.<br />Prevents 'blackholes' when AS is a transit network and not all speaker are running BGP<br />Should be left on it AS is a transit AS and not all routers run BGP.<br />
WM<br />Next hop address is entry point into the next AS along the path to that destination network. It does a recursive lookup to the routing table which should have learned the route from its IGP.<br />in IBGP the next hop advertised by EBGP should
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
19. What are the basic commands to enable BGP - define a BGP peer relationship and advertise a network?
RFC 2362<br />Pull model - traffic only forwarded to the parts of the network that need it. Sender registers with the RP which is a proxy to group members.<br />Last hop routers to receiver knows the group RP IP address and sends a (* -G) join toward
Loopback more resilient than physical interfaces. BGP
Router#(config) router bgp 1<br />Router#(config-router) neighbor 192.168.1.1 remote-as 1<br />Router#(config-router) network 192.168.0. mask 255.255.255.0<br /> BGP
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
20. What are the two multicast distribution tree types models and differences?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
21. What config would be used to configured an outbound BGP distribute list to block all routes from being advertised except ones from 192.168.0.0 /24 network to neighbors 10.1.1.1 and 10.1.1.2?
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
Class D address space<br />First bits are ALWAYS 1110<br />224.0.0.0 - 239.255.255.255<br /> Multicast
22. Explain the AS-Path attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
23. Explain the AS format and ranges?
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
Idle - Router looking in routing table to see if route exists to neighbor. <br /><br />[Active - When no response to Open message] <br /><br />Connect - Router found route to neighbor and has performed the TCP three-way handshake<br /><br />Open Sent
16 bit number 1 to 65535<br />1-64511: Public AS<br />64512-6535: Reserved for private AS<br /> BGP
24. Which IOS command shows what version of IGMP is running?
Session description & announcement.<br />Transport session announcement via 224.2.127.254.<br />Creation of new sessions.<br /> Multicast
Update from client peer - sends update to all non-client peers and client peers except for originating peer.<br />Update from non-client peer - send update to all clients in the cluster.<br />Update from EBGP peer - update sent to all client peers an
Router#show ip igmp interface fa0/0<br /> Multicast
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
25. What is the IOS command to check for IGMP group members? What info does it reveal?
BGP Table - BGP topology database - information <br />BGP Neighbor Table - list of connected neighbors<br />IP Routing Table - Duh.<br /> BGP
Default-Network<br />Static route<br /> BGP
MOSPF<br />DVMRP<br />CBT<br />PIM Dense Mode<br />PIM Sparse Mode<br />PIM Sparse-Dense Mode<br /> Multicast
Router#show ip igmp group<br />Group address - interface - uptime - expires - and last reporter.<br /> Multicast
26. Explain the relationship between MBone - DVMRP - PIM - IGMP - CGMP hosts - routers and switches?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
27. What advantage does multicast offer?
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
Works if router has multiple parallel paths to a destination.<br />ONLY affect number of routes in IP routing table not the route selected at best in the BGP table.<br />Will load balance across equal cost paths in EGP session.<br /> BGP
Local preference<br />Atomic Aggregate BGP
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
28. Explain the methods of advertising networks in BGP.
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
Allow router to operate in sparse mode and dense mode at the same time.<br />Supports multiple RP's and automatic RP selection for each multicast source.<br />Support auto-RP - bootstrap router (BSR) or statically defined RP's with minimal configurat
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
29. How does RPF avoid routing loops?
* = Best route<br />> = Route has been inserted into the routing table<br /> BGP
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
Cluster - combination of RR and its clients. Can have multiple clusters in an AS. <br />Originator ID - carries router ID of the route's originator<br />Cluster ID - configured when multiple RR in a cluster.<br />Cluster list - sequence of cluster ID
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
30. Explain how the multicast routing table is populated.
Using a Distribute List to filter outbound routing updates. BGP
Dense mode interfaces are always added to the table. <br /><br />Sparse mode interfaces are added to the table only when periodic join messages are received from downstream routers - or when a directly connected member is on the interface<br /> Multi
Well know predefined group<br />Directory - sd / SDP<br />Webpage/URL<br />Email link<br /> Multicast
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
31. Explain the Origin attribute.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
32. What is the command to configure a BGP RR?
Must insure loopback is reachable in the routing table. BGP
When not all routers within a transit AS have consistent routing information - due to not running BGP or misconfiguration or BPG speakers. Routing information is advertised but since not all routers within AS can reach the destination traffic is halt
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
Path Vector - policy based routing protocol.<br />Uses BGP attributes are the 'metric'. <br />Path it decides it based on 'hops' where hop is Autonomous Systems.<br /> BGP
33. What command used to perform the following:<br />A) Reset all neighbors session ('bounce')<br />B) Soft inbound reset<br />C) Soft outbound reset<br />D) Soft inbound reset of neighbor 10.1.1.1<br /><br />R1# clear ip bgp <br />R1# clear ip bgp soft
The router will not accept a routing update that includes its AS number in the path. BGP
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
R1# clear ip bgp <br />R1# clear ip bgp soft in<br />R1# clear ip bgp * soft out<br />R1# clear ip bgp 10.1.1.1 soft in<br /><br /> BGP
34. What is the IBGP Split Horizon rule? What does this accomplish?
Sends a leave message to 224.0.0.2<br />Router then sends a group specific query<br />Remaining member(s) send a report so group remains active.<br /> Multicast
When using the <span style='font-style:italic;'>classful</span> method - at least one subnet of the classful range must reside in the IP routing table.<br /><br />When using the <span style='font-style:italic;'>classless</span> method the exact subne
Routes learned through IBPG are never propogated to other IBGP speakers.<br /><br />This is a loop prevention mechanism. BGP
This should only be for ISP's<br />An improperly configured AS (that is not meant to be a transit) could inadvertently become one.<br /> BGP
35. IOS command to configure a rendezvous point .
Partial mesh iBPG is where not all BGP speaks within and AS have an established neighbor relationship. <br />Full mesh is every BGP speaker has a neighbor (peer) with each other. <br />Routing updates are not replcated in iBPG the peers do not pass i
Router#(config) ip pim send-rp-announce interface_type scope ttl group-list access-list Multicast
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
When using the <span style='font-style:italic;'>classful</span> method - at least one subnet of the classful range must reside in the IP routing table.<br /><br />When using the <span style='font-style:italic;'>classless</span> method the exact subne
36. Name the Well-known discretionary attributes.
IGMP Snooping - requires special ASICS can degrade performance with it; is supported by multiple vendors.<br />CGMP - Cisco proprietary - only work on Cisco hardware; resource friendly<br />GMRP - Replaced by MRP; obscure<br />Manually - Performance
Local preference<br />Atomic Aggregate BGP
The Source and Share Tree models are the working model of how the tree is built; all multicast routing protocols fit into one or both. This is the 'theory' or model.<br />PIM-DM's operational falls in the source tree model and PIM-SM is classified an
R1(config-router)#neighbor MyPeers peer-group<br />R1(config-router)#neighbor 10.1.1.1 remote-as 64513<br />R1(config-router)#neighbor 10.1.1.1 peer-group MyPeers<br /> BGP
37. State how IGMPv1 operates.
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
RFC 1112<br />Sends membership query every 60 - 120 seconds to 224.0.0.1<br />Hosts send membership report in response to the query<br /> Multicast
'Periodic Flood and Prune.'<br />Initially floods multicast traffic (received on its RPF) to all its PIM neighbors. Traffic that arrives back at the router via a non-RPF is discarded.<br />Prune messages are sent on all non-RPF interfaces and RPF int
EBGP is an adjacency between BGP peers in different AS; iBGP peers are in same AS. BGP
38. Explain the IGMPv3 membership process and new features.
Links = n(n-1)/2 BGP
Places it in the routing table. BGP
RFC - 3376<br />Ability to filter multicast source (can be picky)<br />IGMPv3 membership report goes to 224.0.0.22 and may include the multicast hosts it will accept or deny.<br /> Multicast
R1(config-router)#neighbor 192.168.1.1 password MyPassword<br /><br />OR<br /><br />R1(config-router)#neighbor MyPeerGroup password MyPassword<br /> BGP
39. What is the significance of an AS being a transit AS?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
40. What special consideration is there when peering to a eBGP neighbor using a loopback? What is the solution to this?
EBGP will only peer to direclty connected neighbors and a loopback is considered one hop away.<br /><br />With eBGP peering to a loopback you must enable eBGP Multihop.<br /><br />R1(config-router)# neighbor 192.168.1.1 ebgp-multihop 2 BGP
Efficiency<br />Performance<br />Scalability with applications<br /> Multicast
R1(config-router)# neighbor 192.168.1.1 next-hop-self<br /><br />Cause each routers outgoing interface that the route traverse wihtin the AS (iBPG peers) to annouce itself as the 'next hop' instead of the next hop into the neighboring AS.<br /><br />
Determines upstream and downstream interfaces.<br />Uses the unicast routing table to insure that only one interface is considered to be and incoming interface for the source.<br />RPF makes sure that if data is looped around is not forwarded. <br />
41. Explain the concept of RPF.
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
BGP not designed for load balancing (by default). <br />BGP selected the SINGLE best path to a destination and places it in the routing table; the rest are kept in the BGP Table.<br />Paths are chosen based on policy. BGP eliminates paths until one p
When AS has more than one connection to the Internet it is called multihoming.<br />Inbound reliability<br />Better performance by selecting more optimal paths<br />Multihoming can be to one ISP or to several.<br /> BGP
Places it in the routing table. BGP
42. What is a BGP route reflector - What is it purpose?
Since IBGP learned routes are never propagate to other IBGP peer - full mesh of IBPG peers is required within an AS. THIS IS NOT SCALABLE. <br />RR allow the propagation of routes learned by IBGP to other IBGP peers without having a full mesh of IBGP
Language between local router interface and hosts.<br />IGMP - ICMP - similarities <br />TTL is usually 1; RFC states it should never leave local subnet.<br />Creates and maintains group membership for hosts wishing to participate in a multicast grou
Must insure loopback is reachable in the routing table. BGP
Unicast uses a routing table looking and forwards towards the destination address.<br />Multicast forwards out multiple interfaces and away from the source and towards multiple destinations using a distribution tree.<br /> Multicast
43. What block of multicast MAC addresses belong to multicast?
Reverse Path Forwarding is the forwarding logic multicast of multicast. <br />It is the opposite of unicast in that is forwards AWAY from source as opposed to towards the receiver.<br /> Multicast
Local scoped: 224.0.0.0 - 224.0.0.255<br />TTL of 1; Never to leave local network - for routing protocols and other network maintenance.<br />Global scoped: 224.0.1.0 - 238.255.255.255<br />MBone dynamically allocate throughout Internet<br />Limited/
Router(config-router)# neighbor 192.168.1.1 remote-as 65000<br />Router(config-router)# neighbor 192.168.1.1 route-reflector-client<br /> BGP
0100.5e00.0000 - 0100.5e7f.ffff - IANA reserved. Multicast
44. What does IGMPv2 add?
Members leave through attrition; no leave group message. This keep traffic flowing for a period of time even with no group members. Multicast
Works if router has multiple parallel paths to a destination.<br />ONLY affect number of routes in IP routing table not the route selected at best in the BGP table.<br />Will load balance across equal cost paths in EGP session.<br /> BGP
RFC 2236<br />Leave and join latency resolved<br />Group specific query to G instead of 224.0.0.1<br />Leave group message<br />Election of querier (lowest IP) on broadcast medium with multiple routers <br /> Multicast
ON<br />Displayed as metric in Cisco IOS; lower is preferred. Default is 0. Indicated to external AS the preferred path into the AS.<br />'Influence inbound traffic to an AS'<br />By default ONLY compares if neighbors AS is same for all routes being
45. Explain the multicast routing table distribution tree notations.
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
46. What are the 4 categories of BGP attributes and what do they mean?
Default-Network<br />Static route<br /> BGP
Well-known Mandatory - Must be supported and propagated.<br />Well-known Discretionary - Must be supported; propagation optional.<br />Optional Transitive - Marked as partial if unsupported by neighbor.<br />Option Nontransitive - Deleted is unsuppor
EBGP = 20<br />iBGP = 200<br /> BGP
R2(config)# access-list 1 permit 192.168.0.0 0.0.0.255<br />R1(config-router)# neighbor 10.1.1.1 distribute-list 1 out<br />R1(config-router)# neighbor 10.1.1.2 distribute-list 1 out<br /> BGP
47. What effect does (S -G) and (* -G) entries have on router CPU?
The unicast routing table.<br />No routing updates are sent between PIM routers.<br /> Multicast
Show ip bgp - Shows entire BGP topology database (BGP table)<br /><br />show ip bgp rib-failure - Displays BGP routes not installd into the routing information base (RIB) and reason they were not installed.<br /><br />show ip bgp neighbors - Displays
SPT (S -G) consume more memory because there is an entry for each source BUT traffic is sent over optimal path to receiver.<br />Shared distribution tree state entries (* -G) consume less CPU but may take suboptimal path to receiver.<br /> Multicast
Default-Network<br />Static route<br /> BGP
48. Name several common local scoped multicast addresses and their purpose.
One-to-many: video distribution<br />Many-to-many: Collaboration<br />Many-to-one: auction - polling or data collection<br />Few-to-many: auction - polling or data collection<br /> Multicast
Member of a group:<br />Router#(config) ip igmp join-group group-address<br />Statically connected:<br />Router#(config) ip igmp join-group group-address<br />In this mode router forwards (fast switches) group packets but itself does not accept group
224.0.0.1 - All systems<br />224.0.0.2 - All routers<br />224.0.0.4 - DVMRP routers<br />224.0.0.5 - All OSPF<br />224.0.0.6 - All OSPF DR<br />224.0.0.9 - RIP v2 routers<br />224.0.0.10 - EIGRP routers<br />224.0.0.13 - PIM routers<br />224.0.0.15 -
This will advertise the entire classful network:<br />R1(config-router)# network 10.1.1.0<br /><br />This will advertise the the classless network:<br />R1(config-router)# network 10.1.1.0 mask 255.255.255.0<br /><br /> BGP
49. What is the BGP Synchronization requirement and What does is prevent? When should it be left disabled? When should it be enabled?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
50. What advantage is there it establishing a neighbor relationship using a loopback interface?
The is the multicast bit. Multicast
Loopback more resilient than physical interfaces. BGP
WM<br /><br />List of AS numbers pre-pended with a list of AS numbers that the route has traversed and the originating AS at the end. 'Path to 192.168.1.0 is (65500 - 65420 - 65874)'<br /><br />This insures a loop-free environment. If BGP receives a
Works if router has multiple parallel paths to a destination.<br />ONLY affect number of routes in IP routing table not the route selected at best in the BGP table.<br />Will load balance across equal cost paths in EGP session.<br /> BGP