SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GMAT Quantitative General
Start Test
Study First
Subjects
:
gmat
,
math
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Percent increase = ?
-b +- sq. rt(b^2 - 4ac) / 2a
P(E)P(F)
(total distance) / (total time)
(amount of change) / (original amount)
2. Sq. rt(2)
1.4
180(n-2)
Find all prime factors
market value
3. Average Rate: Average A per B
3-4-5 - 5-12-13 - 9-12-15
(total A) / (total B)
Odd numbers only have ___________
The amount after deductions
4. Indistinguishable events how to find the number of permutations
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
5. 4th rule of Probability
Minor arc = 2(inscribed angle)
The probability of event A OR B occurring is the probability of event A occurring plus the probability of event B occurring minus the probability of both events occurring. P(A or B) = P(A) +P(B) - P(A and B)
1.4
| A union B| = |A| + |B| - |A intersect B|
6. Trial Problems: look at the probability of NOT OCCURRING
The probability of event occurring is...
The number of ways independent events can occur together can be determined by multiplying together the number of possible outcomes for each event.
Immediately UNFACTOR or vice versa
P(event NOT occurring) = 1 - P(event occurring)
7. Sq. rt(3)
-b +- sq. rt(b^2 - 4ac) / 2a
4/3 TT r ^3
Organize into a grid.
1.7
8. Quadratic formula
-b +- sq. rt(b^2 - 4ac) / 2a
347
sum = (average)(number of terms)
y2 - y1 / x2 - x1
9. The average of 5 numbers is 2. After one number is deleted - the new average is -3. What number was deleted?
3-4-5 - 5-12-13 - 9-12-15
22
The average of a set of evenly spaced consecutive numbers is the average of the smallest and largest numbers in the set.
P(E) + P(F) - P(E and F)
10. (1/4)^2
Last two digits are multiple of 4 or the number can be divided by 2 twice.
Divide 4999 by 15 => 333 integers
1/16
2 steps
11. 30-60-90 triangle basic lengths of sides
Organize into a grid.
(n-1)!
Sum of digits is multiple of 3 - last two digits multiple of 4.
x(sq. rt 3) - x - 2x
12. Dependent events: When are two events said to be dependent events?
The number of ways independent events can occur together can be determined by multiplying together the number of possible outcomes for each event.
Odd numbers only have ___________
$11 - 025
If the outcome of one event affects the outcome of the other event.
13. x^r/s = ?
s Sq. rt (x^r)
Immediately try factoring/simplifying when possible
The probability of event occurring is...
The number of ways independent events can occur together can be determined by multiplying together the number of possible outcomes for each event.
14. Volume of a sphere
16.6%
347
4/3 TT r ^3
(amount of change) / (original amount)
15. Number of integers from A to B inclusive = B - A + 1 - How many consecutive integers are there from 73 through 419 - inclusive?
The probability of an event occurring plus the probability of the event not occurring = 1
347
3-4-5 - 5-12-13 - 9-12-15
(amount of change) / (original amount)
16. 0! = ?
A = P(1 + r) ^n
1
If a point is chosen at random within a space with an area - volume - or length of Y and a space with a respective area - volume - or length of X lies within Y - the probability of choosing a random point within Y is the area - volume - or length of
Even
17. If you have to guess in a problem - which ones should you guess? Especially if you have to plug numbers.
A = P(1 + r) ^n
D or E
14 liters
1. Start by writing each number as a product of primes. 2. Write so that each new prime factor begins in the same place. 3. Lowest common multiple is found by multiplying all factors in either list.
18. Net
Find simple interest then look for the answer that is a little bigger
The amount after deductions
______ |m-n|
(amount of change) / (original amount)
19. Multiplication principle
1/16
if a first object may be chosen in m ways and a second object may be chosen in n ways - then there are mn ways of choosing both objects
To find the number of distinct permutations of a set of items with indistinguishable ('repeat') items - divide the factorial of the items in the set by the product of the factorials of the number of indistinguishable elements.
multiply or divide the numbers outside the radical signs - then the numbers inside the radical signs
20. Multiples of 3
Even
3 - 6 - 9 - 12
(x-n(n)y-n)
1st Rule of Probability: Basic Rule is what?
21. Gross Profit formula
Even integer. Neither positive nor negative. Multiple of every number. Not a factor of any number.
| A union B| = |A| + |B| - |A intersect B|
The amount after deductions
Gross Profit = Selling Price - Cost
22. Probability and Geometry.
multiply or divide the numbers outside the radical signs - then the numbers inside the radical signs
principle (interest rate - in decimal form) (time - in years)
If a point is chosen at random within a space with an area - volume - or length of Y and a space with a respective area - volume - or length of X lies within Y - the probability of choosing a random point within Y is the area - volume - or length of
347
23. Number added or deleted
Total = mean x (number of terms) Number deleted = (original total) - (new total) Number added = (new total) - (original total)
x(sq. rt 3) - x - 2x
s Sq. rt (x^r)
-b +- sq. rt(b^2 - 4ac) / 2a
24. 2n+1 - 2n+3 - 2n+5
1. Start by writing each number as product of primes. 2. Write so that each new prime factor begins in the same place. 3. Greatest Common Factor is found by multiplying all factors appearing in BOTH lists
Odd
s Sq. rt (x^r)
Balancing
25. Permutations: Order Matters
n! / (n - r)!
For a fixed distance - the average speed is inversely related to the amount of time required to make the trip.
Organize into a grid.
Balancing
26. How to find all divisors of a number
83.3%
x(sq. rt 3) - x - 2x
Find all prime factors
If the outcome of one event affects the outcome of the other event.
27. How do you multiply roots together.
Immediately UNFACTOR or vice versa
multiply or divide the numbers outside the radical signs - then the numbers inside the radical signs
P(E)P(F)
3-4-5 - 5-12-13 - 9-12-15
28. Combined Events: E or F
P(E) + P(F) - P(E and F)
(x-n(n)y-n)
(# of favorable outcomes) / (# of possible outcomes)
1. Start by writing each number as a product of primes. 2. Write so that each new prime factor begins in the same place. 3. Lowest common multiple is found by multiplying all factors in either list.
29. Percent Formula
83.3%
p/100 = is/of
Find all prime factors
The total amount before any deductions
30. The number of outcomes that result in A divided by the total number of possible outcomes.
(amount of change) / (original amount)
Sum of digits is multiple of 9
The probability of event occurring is...
n! / (n - r)!
31. 1. A and B < A or B 2. A or B > Individual probabilities of A - B 3. P(A and B) = P(A) x P(B) <-- 'fewer options' 4. P(A or B) = P(A) + P(B) <-- 'more options' - Probability of multiple events rules.
1st Rule of Probability: Basic Rule is what?
3 - 6 - 9 - 12
market value
(# of favorable outcomes) / (# of possible outcomes)
32. The number of ways independent events can occur together.
22
The number of ways independent events can occur together can be determined by multiplying together the number of possible outcomes for each event.
if a first object may be chosen in m ways and a second object may be chosen in n ways - then there are mn ways of choosing both objects
16.6%
33. What to do with equations that have fractions
s Sq. rt (x^r)
x - x - x(sq. rt 2)
Immediately try factoring/simplifying when possible
1. Start by writing each number as a product of primes. 2. Write so that each new prime factor begins in the same place. 3. Lowest common multiple is found by multiplying all factors in either list.
34. Odd and Even rule.
$11 - 025
Any multiplication involving an even number creates an even product.
16.6%
p/100 = is/of
35. What does the Sum of the angles in a Regular Polygon formula look like?
22
180(n-2)
(x-n(n)y-n)
Find all prime factors
36. Price sold for by retailer (after markup)
market value
(amount of change) / (original amount)
x - x - x(sq. rt 2)
1.7
37. Set Problems formula
Organize into a grid.
Sum of digits is multiple of 3 - last two digits multiple of 4.
(x-n(n)y-n)
Number is a multiple of 3 and 2
38. Always try to factor
always try to factor
22
(total distance) / (total time)
Sum of digits is multiple of 9
39. Combined Events: E and F
Find simple interest then look for the answer that is a little bigger
P(E)P(F)
(total distance) / (total time)
16.6%
40. In general - difficult questions require how many steps to solve?
3-4-5 - 5-12-13 - 9-12-15
347
at least 3 steps
sum = (average)(number of terms)
41. Work problem rule
Number is a multiple of 3 and 2
Immediately try factoring/simplifying when possible
(total A) / (total B)
Consider work done in one hour. Inverse of the time it takes everyone working together = Sum of the inverse of the times it would take each person working individually.
42. Since Mieko's average speed was 3/4 of Chan's - her time was 4/3 as long.
The number of ways independent events can occur together can be determined by multiplying together the number of possible outcomes for each event.
1. Start by writing each number as a product of primes. 2. Write so that each new prime factor begins in the same place. 3. Lowest common multiple is found by multiplying all factors in either list.
For a fixed distance - the average speed is inversely related to the amount of time required to make the trip.
4/3 TT r ^3
43. Some GMAT word problems involve groups with distinct 'either/or' categories (male/female - blue collar/white collar - etc.) The key is to do what with the information? 1. Find total number of possible outcomes. 2. Find the number of desired outcomes.
Organize into a grid.
n! / (n - r)!
P(E)P(F)
P(event NOT occurring) = 1 - P(event occurring)
44. 1/6 = what %
Check each prime number up to the approximate square root of the number. If you haven't found a number less than or equal to the square root of the number - then the number is prime.
Exterior angle d is equal to the sum of the two remote interior angles a and b
Even integer. Neither positive nor negative. Multiple of every number. Not a factor of any number.
16.6%
45. 1/8 = what %
12.5%
A = P(1 + r) ^n
Purchase price
Any multiplication involving an even number creates an even product.
46. When you see an equation in factored form in a question?
at least 3 steps
347
Divide 4999 by 15 => 333 integers
Immediately UNFACTOR or vice versa
47. In general - medium questions require how many steps to solve?
If the outcome of one event affects the outcome of the other event.
P(E)P(F)
2 steps
(# of favorable outcomes) / (# of possible outcomes)
48. gcd(m,n)
______ |m-n|
multiply or divide the numbers outside the radical signs - then the numbers inside the radical signs
The probability of event occurring is...
(total distance) / (total time)
49. Think of averages as what? The average of 3 - 4 - 5 - and x is 5. What is x? 3 is 2 less than 5 4 is 1 less than 5 - 5 is the average - x = 5 + 3 = 8
Balancing
| A union B| = |A| + |B| - |A intersect B|
(# of favorable outcomes) / (# of possible outcomes)
Exterior angle d is equal to the sum of the two remote interior angles a and b
50. How to check whether number is multiple of 9
Sum of digits is multiple of 9
A = P(1 + r) ^n
(total A) / (total B)
the probability of event A AND event B occurring is the probability of event A times the probability of event B - given that A has already occurred.