Test your basic knowledge |

GMAT Word Translations

Instructions:
  • Answer 50 questions in 15 minutes.
  • If you are not ready to take this test, you can study here.
  • Match each statement with the correct term.
  • Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.

This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Quantity that expresses the chance - or likelihood - of an event. To find a probability - you need to know the total number of possibilities and the number of successful scenarios. All outcomes must be equally likely. Use a counting tree to find the






2. A rearrangement of the letters in a word or phrase. Count the anagrams of a simple word with n letters by using n! When there are repeated items in a set - reduce the number of arrangements. The number of arrangements of a word is the factorial of th






3. Counting the number of possibilities/ways you can arrange things.Fundamental Counting Principle: if you must make a number of separate decisions - then MULTIPLY the numbers of ways to make each individual decision to find the number of ways to make a






4. Marked by 3 primary components: rate - time & distance or work. Rate x Time = Distance (RT=D) Rate x Time= Work (RT = W)






5. Determine the combined rate of all the workers working together: sum the individual working rates. If one agent is undoing the work of another - subtract their working rates. If a work problem involves time relations - then the calculations are just






6. If a probability problem seems to require extensive calculation - try to reformulate it in a way that either takes advantage of symmetry in the problem or groups several individual cases together at once.






7. Make a chart when several quantities and multiple relationships. Ex: age problems - people in rows - times in columnsn 1. Assign variables - try to use 1 variable for simplicity. 2. Write equations - use leftover information/relationships to write eq






8. For problems with only two categories or decisions - use a double-set matrix: Rows correspond to the options for one DECISION - columns correspond to the options for the other DECISION. Last row and column contain totals. Bottom right corner has tota






9. For problems involving percents or fractions - use smart numbers and a double-set matrix to solve. For problems with percents - pick a total of 100. For problems with fractions - pick a common denominator for the total. You can only assign a number t






10. Put people or items into groups to maximize or minimize a characteristic in the group.






11. 1. Basic motion problems 2. Average rate problems 3. Simultaneous motion problems 4. Work problems 5. Population problems






12. The numbers in the same row of an RTD table will always multiply across. The specifics of the problem determine which columns will add up into a total row. R x T = D 1. The kiss (or crash) ADD SAME ADD 2. the quarrel (away from) ADD SAME ADD 3. The c






13. If X and Y are independent events - AND means multiply the probabilities. You will wind up with a smaller number - which indicates a lower probability of success. If X and Y are mutually exclusive - OR means add the probabilities. You will wind up wi






14. Twice/half/n times as fast as - slower/faster - relative rates






15. Can be solved with a proportion. 1. Set up a labeled proportion. 2. Cross-multiply to solve. Cancel factors out before multiplying to save time. Can cancel either vertically within a fraction or horizontally across the equals sign.






16. To keep track of branching possibilities and 'winning scenarios': label each branch and input the probabilities - on the second set of branches - input the probabilities AS IF the first pick was made - remember the domino effect! - compute the probab






17. 1. Draw empty slots corresponding to each of the choices you have to make. 2. Fill in each slot with the number of options for that slot. Choose the most restricted opt ins first. 3. Multiply the numbers in the slots to find the total number of combi






18. Many word problems with 'how many' are combinatorics. Many combinatorics masquerade as probability problems. Looking for analogies to known problem types will help find a viable solution. Break down complicated counting problems into separate decisio






19. Multiply the probabilities of events in a sequence - taking earlier events into account. When you have a symmetrical problem with multiple equivalent cases - calculate the probability of one case (often using the domino effect rule above). Then multi






20. If you have to construct and manipulate completely abstract sets - use alphabetical order to make the sets a little more concrete. If the problem is complex - create a column chart. Each column is a number in the set. Put the columns in order with t






21. Maximize or minimize a quantity by choosing optimal values.






22. If switching elements in a chosen set creates a different set - it is a ______________. There are usually fewer combinations than permutations.






23. For counting the possible number of ways of putting n distinct objects in order - if there are no restrictions - is n! (n factorial).






24. Pay close attention to the wording of the problem to see if you need to use algebra to represent the unknowns.From the relationships in the table - set up an equation to solve for unknowns. With that information - fill in the rest of the double-set m






25. Will be closer to the number with the bigger weight. If the weights don't add to one - sum the weights and use that to divide in order to have a total weight of one. Weighted average = weight/sum of weights(data point) + weight/sum of weights(data po






26. You don't need ____________ to find the weights. Having the ratios of the weights will allow you to find the weighted average. Write the ratio as a fraction; use the numerator and denominator as weights. If you are finding a weighted average of rates






27. Combination: selection of items from a larger pool where the order doesn't matter. Number of r items chosen from a pool of n items: n!/(n-r)!*r! Permutation: selection of items from a larger pool where the order matters. n!/(n-r)!






28. Changes to Mean: Change in mean = New term - Old mean / New number of terms -- Using residuals: Residual = Data point - Mean - Keep track of signs of residuals. The residuals sum to zero in any set. All residuals cancel out.






29. In some probability problems - both the 'desired' possibilities and the total possibilities require counting. Use combinatorial methods to calculate the numbers of possibilities. After finding the numbers - set up the probability as a fraction - 'win






30. = sum/# of terms If you know the average - use this formula: (average) x (# of terms) = (sum) - All that matters is the sum of the terms - not the individual terms. To keep track of two average formulas - set up an RTD-style table.






31. Venn diagrams should ONLY be used for problems that involve 3 sets with only 2 choices per set. Work from the inside out when filling in. When filling in each outer level - remember to subtract out the members in the inner levels. To determine the to






32. The average of consecutive integers is the middle term - same for any set with terms that are evenly spaced. The average is the middle term. If the set has two middle terms - take the average of the two middle numbers. To find the average (middle ter






33. Avoid writing relationships backwards. Quickly check your translations with easy numbers. Write an unknown percent as a variable divided by 100. Translate bulk discounts and similar relationships carefully.






34. Make a table with a few rows with NOW in the middle row. Work forwards and backwards from NOW using the problem's information. Maybe pick a smart number for the starting point - choose a number that makes the math simple.






35. If a problem has unusual constraints - try counting arrangements without constraints first. Then subtract the forbidden arrangements. Glue Method: for problems in which items or people must be next to each other - pretend that the items 'stuck togeth






36. To combine ratios with common elements - multiply all of the ratios by the same number (a common multiple). Make the term you are working with the least common multiple of the current values.






37. Be able to write word problems with two different types of equations: - relate the quantities or numbers of different goods - relate the total values of the goods. 1. Assign variables - try to use as few variables as possible. 2. Write equations - fo






38. Don't just add and divide! If something moves the same distance twice but at different rates - then the average rate will NEVER be the average of the two given rates. The average rate will be closer to the slower of the two rates. Find the total comb






39. For complicated ratio problems - the unknown multiplier technique is useful. Represent ratios with some unknown number/variable to reduce the number of variables and make the algebra easier. You can only use it once per problem. You should use it whe






40. I - or interval - amount of time given for the quantity to grow or decay S - or starting value - size of the population at time zero t - or time - is the variable (make sure all time units are the same) x - growth or decay factor - Population = S*x^(






41. If a GMAT problem requires you to choose two or more sets of items from separate pools - count the arrangements separately. Then multiply the numbers of possibilities for each step.






42. Optimization: inversion between finding the min/max and the values givens typical. Be careful to round up or down appropriately. Grouping: determine the limiting factor on the number of complete groups. Think about the most or least evenly distribute






43. Contains no variables; simply plug and chug. 1. Take careful inventory of qtys - numbers and units. 2. Use math techniques and tricks to solve; assign variables. 3. Draw diagrams - tables and charts to organize the information. 4. Read the problem ca






44. Express a relationship between two or more quantities. - the relationship they express is division. Can be expressed with the word 'to' - using a colon - or by writing a fraction. Can express a part-part relationship or part-whole. Cannot find the qu






45. Some population that typically increases by a common factor every time period.






46. Difficult problems involve rates - times and distances for more than one trip or traveler - expand the RTD chart by adding rows for each trip.






47. Slower/faster - left... and met/arrived at






48. Involve time - rate and work.- work: number of jobs completed or items produced - time: time spent working - rate: ratio of work to time - amount completed in one time unit Often have to calculate the work rate. Always express as jobs per unit of tim






49. Indicates how far from the average data points typically fall. A small SD indicates a set is clustered closely around the average while a large SD indicates the set is spread out widely. You will not need to calculate an exact SD. GMAT questions invo






50. Planning a timeline to coordinate events to a set of restrictions. Focus on the extreme scenarios: 1. Be aware of both explicit and hidden constraints.2. Choose the highest or lowest values of the variables. 3. Be very careful about rounding.