Test your basic knowledge |

GMAT Word Translations

Instructions:
  • Answer 50 questions in 15 minutes.
  • If you are not ready to take this test, you can study here.
  • Match each statement with the correct term.
  • Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.

This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Combination: selection of items from a larger pool where the order doesn't matter. Number of r items chosen from a pool of n items: n!/(n-r)!*r! Permutation: selection of items from a larger pool where the order matters. n!/(n-r)!






2. Involve time - rate and work.- work: number of jobs completed or items produced - time: time spent working - rate: ratio of work to time - amount completed in one time unit Often have to calculate the work rate. Always express as jobs per unit of tim






3. Can be solved with a proportion. 1. Set up a labeled proportion. 2. Cross-multiply to solve. Cancel factors out before multiplying to save time. Can cancel either vertically within a fraction or horizontally across the equals sign.






4. The average of consecutive integers is the middle term - same for any set with terms that are evenly spaced. The average is the middle term. If the set has two middle terms - take the average of the two middle numbers. To find the average (middle ter






5. In certain types of OR problems - the probability of the desired event NOT happening may be easier to find. If on a problem - 'success' contains multiple possibilities -- especially if the wording contains phrases such as 'at least' and 'at most' --






6. For sets with an odd number of values - the median is the middle value when in order. For sets with an even number of values - the median is the average of the two middle values. You maybe able to determine a specific value for the median even if unk






7. Difficult problems involve rates - times and distances for more than one trip or traveler - expand the RTD chart by adding rows for each trip.






8. Pay close attention to the wording of the problem to see if you need to use algebra to represent the unknowns.From the relationships in the table - set up an equation to solve for unknowns. With that information - fill in the rest of the double-set m






9. Many word problems with 'how many' are combinatorics. Many combinatorics masquerade as probability problems. Looking for analogies to known problem types will help find a viable solution. Break down complicated counting problems into separate decisio






10. Counting the number of possibilities/ways you can arrange things.Fundamental Counting Principle: if you must make a number of separate decisions - then MULTIPLY the numbers of ways to make each individual decision to find the number of ways to make a






11. 1. Assign variables - make up letters to represent unknown quantities to set up equations - choose meaningful letters - avoid subscripts - try to minimize the number of variables 2. Write equations - translate verbal relationships into math symbols.






12. The numbers in the same row of an RTD table will always multiply across. The specifics of the problem determine which columns will add up into a total row. R x T = D 1. The kiss (or crash) ADD SAME ADD 2. the quarrel (away from) ADD SAME ADD 3. The c






13. If a probability problem seems to require extensive calculation - try to reformulate it in a way that either takes advantage of symmetry in the problem or groups several individual cases together at once.






14. Quantity that expresses the chance - or likelihood - of an event. To find a probability - you need to know the total number of possibilities and the number of successful scenarios. All outcomes must be equally likely. Use a counting tree to find the






15. The order a ratio is given in is vital. To avoid reversals - always write units on either the ratio or the variables.






16. If switching elements in a chosen set creates a different set - it is a ______________. There are usually fewer combinations than permutations.






17. Indicates how far from the average data points typically fall. A small SD indicates a set is clustered closely around the average while a large SD indicates the set is spread out widely. You will not need to calculate an exact SD. GMAT questions invo






18. Multiply the probabilities of events in a sequence - taking earlier events into account. When you have a symmetrical problem with multiple equivalent cases - calculate the probability of one case (often using the domino effect rule above). Then multi






19. If a GMAT problem requires you to choose two or more sets of items from separate pools - count the arrangements separately. Then multiply the numbers of possibilities for each step.






20. Don't just add and divide! If something moves the same distance twice but at different rates - then the average rate will NEVER be the average of the two given rates. The average rate will be closer to the slower of the two rates. Find the total comb






21. Changes to Mean: Change in mean = New term - Old mean / New number of terms -- Using residuals: Residual = Data point - Mean - Keep track of signs of residuals. The residuals sum to zero in any set. All residuals cancel out.






22. If X and Y are independent events - AND means multiply the probabilities. You will wind up with a smaller number - which indicates a lower probability of success. If X and Y are mutually exclusive - OR means add the probabilities. You will wind up wi






23. Maximize or minimize a quantity by choosing optimal values.






24. Check the problem to see if the are any implied constraints to variables like whole numbers. You can solve a data sufficiency question with little information if whole numbers are involved. You can use a table to generate - organize - and eliminate i






25. I - or interval - amount of time given for the quantity to grow or decay S - or starting value - size of the population at time zero t - or time - is the variable (make sure all time units are the same) x - growth or decay factor - Population = S*x^(






26. Venn diagrams should ONLY be used for problems that involve 3 sets with only 2 choices per set. Work from the inside out when filling in. When filling in each outer level - remember to subtract out the members in the inner levels. To determine the to






27. In some probability problems - both the 'desired' possibilities and the total possibilities require counting. Use combinatorial methods to calculate the numbers of possibilities. After finding the numbers - set up the probability as a fraction - 'win






28. Express a relationship between two or more quantities. - the relationship they express is division. Can be expressed with the word 'to' - using a colon - or by writing a fraction. Can express a part-part relationship or part-whole. Cannot find the qu






29. Make a chart when several quantities and multiple relationships. Ex: age problems - people in rows - times in columnsn 1. Assign variables - try to use 1 variable for simplicity. 2. Write equations - use leftover information/relationships to write eq






30. 1. Draw empty slots corresponding to each of the choices you have to make. 2. Fill in each slot with the number of options for that slot. Choose the most restricted opt ins first. 3. Multiply the numbers in the slots to find the total number of combi






31. You don't need ____________ to find the weights. Having the ratios of the weights will allow you to find the weighted average. Write the ratio as a fraction; use the numerator and denominator as weights. If you are finding a weighted average of rates






32. For complicated ratio problems - the unknown multiplier technique is useful. Represent ratios with some unknown number/variable to reduce the number of variables and make the algebra easier. You can only use it once per problem. You should use it whe






33. To combine ratios with common elements - multiply all of the ratios by the same number (a common multiple). Make the term you are working with the least common multiple of the current values.






34. = sum/# of terms If you know the average - use this formula: (average) x (# of terms) = (sum) - All that matters is the sum of the terms - not the individual terms. To keep track of two average formulas - set up an RTD-style table.






35. If you have to construct and manipulate completely abstract sets - use alphabetical order to make the sets a little more concrete. If the problem is complex - create a column chart. Each column is a number in the set. Put the columns in order with t






36. To keep track of branching possibilities and 'winning scenarios': label each branch and input the probabilities - on the second set of branches - input the probabilities AS IF the first pick was made - remember the domino effect! - compute the probab






37. 1. Basic motion problems 2. Average rate problems 3. Simultaneous motion problems 4. Work problems 5. Population problems






38. For counting the possible number of ways of putting n distinct objects in order - if there are no restrictions - is n! (n factorial).






39. Make a table with a few rows with NOW in the middle row. Work forwards and backwards from NOW using the problem's information. Maybe pick a smart number for the starting point - choose a number that makes the math simple.






40. Slower/faster - left... and met/arrived at






41. Planning a timeline to coordinate events to a set of restrictions. Focus on the extreme scenarios: 1. Be aware of both explicit and hidden constraints.2. Choose the highest or lowest values of the variables. 3. Be very careful about rounding.






42. Twice/half/n times as fast as - slower/faster - relative rates






43. If a problem has unusual constraints - try counting arrangements without constraints first. Then subtract the forbidden arrangements. Glue Method: for problems in which items or people must be next to each other - pretend that the items 'stuck togeth






44. Use anagram grids to solve combinations with repetition. Set up an anagram grid to put unique items or people on the top row. Only the bottom row should have repeats. To count possible groups - divide the total factorial by two factorials: one for th






45. A rearrangement of the letters in a word or phrase. Count the anagrams of a simple word with n letters by using n! When there are repeated items in a set - reduce the number of arrangements. The number of arrangements of a word is the factorial of th






46. Scheduling: focus on the extreme possibilities (earliest/latest time slots). Read the problem carefully!






47. Be able to write word problems with two different types of equations: - relate the quantities or numbers of different goods - relate the total values of the goods. 1. Assign variables - try to use as few variables as possible. 2. Write equations - fo






48. Will be closer to the number with the bigger weight. If the weights don't add to one - sum the weights and use that to divide in order to have a total weight of one. Weighted average = weight/sum of weights(data point) + weight/sum of weights(data po






49. For problems with only two categories or decisions - use a double-set matrix: Rows correspond to the options for one DECISION - columns correspond to the options for the other DECISION. Last row and column contain totals. Bottom right corner has tota






50. Marked by 3 primary components: rate - time & distance or work. Rate x Time = Distance (RT=D) Rate x Time= Work (RT = W)