SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GRE Math: Common Errors
Start Test
Study First
Subjects
:
gre
,
math
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Hector invested $6000. Part was invested in account with 9% simple annual interest - and the rest in account with 7% simple annual interest. If he earned $490 in the first year of these investments - how much did he invest in each account?
The curve opens downward and the vertex is the maximum point on the graph.
A 30-60-90 triangle.
Even
$3 -500 in the 9% and $2 -500 in the 7%.
2. Evaluate 4/11 + 11/12
x^(4+7) = x^11
13
Area of the base X height = (pi)hr^2
1 & 37/132
3. Ratio of ages of Anna and Emma is 3:5 and of Emma and Nicolas is 3:5. What is the ratio of Anna to Nicholas' ages?
4:9. The ratio of the areas of two similar triangles equals the square of the ratio of the corresponding sides.
10! / 3!(10-3)! = 120
9 : 25
An isosceles right triangle.
4. Which quadrant is the upper left hand?
A chord is a line segment joining two points on a circle.
II
8
A subset.
5. Describe the relationship between the graphs of x^2 and (1/2)x^2
4a^2(b)
The second graph is less steep.
180 degrees
20.5
6. What are the integers?
Undefined
All numbers multiples of 1.
2^9 / 2 = 256
When we need to avoid having a zero in the denominator or avoid taking the square root of a number.
7. Formula for the area of a circle?
A grouping of the members within a set based on a shared characteristic.
An expression with just one term (-6x - 2a^2)
A = pi(r^2)
Its negative reciprocal. (-b/a)
8. What are the rational numbers?
All numbers which can be expressed as a ratio of two integers. (All integers and fractions.) (-2 - 1 - .25 - 1/2)
Undefined - because we can'T divide by 0.
No - only like radicals can be added.
(a + b)^2
9. Circumference of a circle?
Arc length = (n/360) x pi(2r) where n is the number of degrees.
Sqrt 12
Diameter(Pi)
1
10. 3/8 in percent?
37.5%
[(7+ sqrt93) /2] - [(7 - sqrt93) / 2]
F(x-c)
13pi / 2
11. 60 < all primes <70
Its divisible by 2 and by 3.
61 - 67
A circle centered at -2 - -2 with radius 3.
12sqrt2
12. What is a parabola?
90pi
4725
37.5%
Ax^2 + bx + c where a -b and c are constants and a /=0
13. There are 10 finalists for the school spelling bee. A first - second - and third place trophy will be awarded. How many different people can get the three prizes?
2sqrt6
10! / 3!(10-3)! = 120
12sqrt2
3 - -3
14. What is the ratio of the sides of a 30-60-90 triangle?
A chord is a line segment joining two points on a circle.
1:sqrt3:2
90pi
1
15. What is the 'Restricted domain of a function'?
Angle/360 x 2(pi)r
No - the input value has exactly one output.
90pi
When the function is not defined for all real numbers -; only a subset of the real numbers.
16. Define an 'expression'.
An algebraic expression is a combination of one of more terms. Terms in an expression are separated by either addition or subtraction signs. (3xy - 4ab - -5cd - x^2 + x - 1)
72
441000 = 1 10 10 10 21 * 21
Ax^2 + bx + c where a -b and c are constants and a /=0
17. Define a 'Term' -
1/a^6
The shortest arc between points A and B on a circle'S diameter.
A term is a numerical constant or the product (or quotient) of a numerical constant and one or more variables. (3x - 4x^2 and 2a/c)
Factors are few - multiples are many.
18. Reduce: 4.8 : 0.8 : 1.6
6 : 1 : 2
5 OR -5
180
Yes - because you can factor out a perfect square (36). Sqrt(36 x 2) = sqrt36 X sqrt2 = 6sqrt2.
19. How to determine percent increase?
No - only like radicals can be added.
(amount of increase/original price) x 100%
9 : 25
28. n = 8 - k = 2. n! / k!(n-k)!
20. A number is divisible by 4 is...
3
Its negative reciprocal. (-b/a)
Its last two digits are divisible by 4.
23 - 29
21. Pi is a ratio of what to what?
22. 0^0
Undefined
1 & 37/132
2.592 kg
x = [(-b)+/- (sqrt b^2 - 4ac)]/2a
23. 7/8 in percent?
Area of the base X height = (pi)hr^2
Even
1
87.5%
24. For what values should the domain be restricted for the function f(x) = sqrt(x + 8)
8
Its last two digits are divisible by 4.
G(x) = {x}
The sum of its digits is divisible by 3.
25. How to find the area of a sector?
Angle/360 x (pi)r^2
A subset.
6
Pi is the ratio of a circle'S circumference to its diameter.
26. To convert a decimal to a percent...
The set of elements found in both A and B.
1
...multiply by 100.
28. n = 8 - k = 2. n! / k!(n-k)!
27. 5/6 in percent?
62.5%
Diameter(Pi)
83.333%
x^(4+7) = x^11
28. Convert 0.7% to a fraction.
90pi
Triangles with same measure and same side lengths.
7 / 1000
16^8 - 64^5 = (4^3)^5 = 4^15 - 16^8=(4^2)^8 = 4^16
29. If the two sides of a triangle are unequal then the longer side...
5 OR -5
(amount of increase/original price) x 100%
(6 x 2)(sqrt3 x sqrt5) = 12sqrt15
Lies opposite the greater angle
30. If 8 schools are in a conference - how many games are played if each team plays each other exactly once?
13
180
x = [(-b)+/- (sqrt b^2 - 4ac)]/2a
28. n = 8 - k = 2. n! / k!(n-k)!
31. Define a 'monomial'
Even
71 - 73 - 79
41 - 43 - 47
An expression with just one term (-6x - 2a^2)
32. x^2 = 9. What is the value of x?
6
6 : 1 : 2
3 - -3
(6 x 2)(sqrt3 x sqrt5) = 12sqrt15
33. The four angles around a point measure y - 2y - 35 and 55 respectively. What is the value of y?
90
A reflection about the origin.
28. n = 8 - k = 2. n! / k!(n-k)!
F(x) - c
34. P and r are factors of 100. What is greater - pr or 100?
11 - 13 - 17 - 19
(a - b)(a + b)
A chord is a line segment joining two points on a circle.
Indeterminable.
35. What is the sum of the angles of a triangle?
A grouping of the members within a set based on a shared characteristic.
180 degrees
The direction of the inequality is reversed.
A reflection about the origin.
36. 5 bakeries sell an average of 300 muffins per bakery per day. If 2 stop making muffins but the total muffins sold stays the same - what is the average of muffins per bakery sold among the remaining?
The curve opens downward and the vertex is the maximum point on the graph.
500
90 degrees
61 - 67
37. If Madagascar'S exports totaled 1.3 billion in 2009 - and 4% came from China - what was the value in millions of the country'S exports to China?
52
Its divisible by 2 and by 3.
10
x^(4+7) = x^11
38. The objects in a set are called two names:
The third side is greater than the difference and less than the sum.
C = 2(pi)r
Members or elements
Area of the base X height = (pi)hr^2
39. 1:1:sqrt2 is the ratio of the sides of what kind of triangle?
(a + b)^2
An isosceles right triangle.
4:5
All the numbers on the number line (negative - rational - irrational - decimal - integer). All the numbers on the GRE are real. (-2 - 1 - .25 - 1/2 - pi)
40. A brick with dimensions 10. 15 and 25 weighs 1.5 kg. A second brick (same density) has dimensions 12 - 18 - and 30. What is the weight of the second brick?
An angle which is supplementary to an interior angle.
2.592 kg
The union of A and B.
61 - 67
41. What is the measure of an exterior angle of a regular pentagon?
72
Two equal sides and two equal angles.
F(x) - c
11 - 13 - 17 - 19
42. To multiply a number by 10^x
1 & 37/132
13
Move the decimal point to the right x places
75:11
43. What is a set with no members called?
The empty set - denoted by a circle with a diagonal through it.
(base*height) / 2
PEMDAS (Parentheses Exponents Multiplication/Division Addition/Subtraction)
From northeast - counterclockwise. I - II - III - IV
44. What is an isoceles triangle?
Two equal sides and two equal angles.
A= I (1 + (r/c))^tC - where I is the investment - C is the number of times compounded annually - and t is the number of years.
0
Infinite.
45. Which is greater? 27^(-4) or 9^(-8)
The interesection of A and B.
A set with a number of elements which can be counted.
12! / 5!7! = 792
27^(-4)
46. What is the formula for computing simple interest?
F(x + c)
A circle centered on the origin with radius 8.
9 : 25
A = I (1 + rt)
47. 10^6 has how many zeroes?
The second graph is less steep.
6
The set of output values for a function.
Undefined - because we can'T divide by 0.
48. In similar hexagons - the ratio of the areas is 16:25. What is the ratio of their corresponding sides?
0
The two xes after factoring.
4:5
A subset.
49. Length of an arc of a circle?
A= I (1 + (r/c))^tC - where I is the investment - C is the number of times compounded annually - and t is the number of years.
4725
Angle/360 x 2(pi)r
The set of input values for a function.
50. For similar triangles - the ratio of their corresponding sides is 2:3. What is the ratio of their areas?
4:9. The ratio of the areas of two similar triangles equals the square of the ratio of the corresponding sides.
Indeterminable.
41 - 43 - 47
The sum of digits is divisible by 9.