SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GRE Math: Common Errors
Start Test
Study First
Subjects
:
gre
,
math
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. What is the name of set with a number of elements which cannot be counted?
90 degrees
Expressing a number as the product of a decimal between 1 and 10 - and a power of 10.
A grouping of the members within a set based on a shared characteristic.
An infinite set.
2. Area of a triangle?
Expressing a number as the product of a decimal between 1 and 10 - and a power of 10.
0
(6 x 2)(sqrt3 x sqrt5) = 12sqrt15
(base*height) / 2
3. Formula to find a circle'S circumference from its radius?
48
71 - 73 - 79
0
C = 2(pi)r
4. What is a tangent?
A tangent is a line that only touches one point on the circumference of a circle.
The empty set - denoted by a circle with a diagonal through it.
Angle/360 x 2(pi)r
The set of output values for a function.
5. What is the area of a regular hexagon with side 6?
The objects within a set.
N! / (n-k)!
54sqrt3. (divide the hexagon into 6 congruent equilateral triangles.
90pi
6. Define a 'monomial'
An expression with just one term (-6x - 2a^2)
130pi
A circle centered on the origin with radius 8.
83.333%
7. What is the 'domain' of a function?
87.5%
62.5%
The set of input values for a function.
Diameter(Pi)
8. Suppose you have a set of n objects - and you want to select k of them - but the order doesn'T matter. What formula do you use to determine the number of combinations of n objects taken k at a time?
1/a^6
N! / (k!)(n-k)!
A reflection about the axis.
Factors are few - multiples are many.
9. Which quadrant is the upper left hand?
2sqrt6
II
(base*height) / 2
23 - 29
10. For what values should the domain be restricted for the function f(x) = sqrt(x + 8)
8
The shortest arc between points A and B on a circle'S diameter.
Circumference = Diameter(pi). Use pythagorean theorem to find the diagonal of the square (the diameter).
x^(2(4)) =x^8 = (x^4)^2
11. In a regular polygon with n sides - the formula for the sum of interior angles
(n-2) x 180
413.03 / 10^4 (move the decimal point 4 places to the left)
N! / (n-k)!
1/2 times 7/3
12. There are 10 finalists for the school spelling bee. A first - second - and third place trophy will be awarded. In how many ways can the judges award the 3 prizes?
The curve opens downward and the vertex is the maximum point on the graph.
All real numbers which can'T be expressed as a ratio of two integers - positive and negative (pi - -sqrt3)
1
10! / (10-3)! = 720
13. Solve the quadratic equation ax^2 + bx + c= 0
3
x = [(-b)+/- (sqrt b^2 - 4ac)]/2a
(amount of decrease/original price) x 100%
I
14. How many multiples does a given number have?
When we need to avoid having a zero in the denominator or avoid taking the square root of a number.
(6 x 2)(sqrt3 x sqrt5) = 12sqrt15
18
Infinite.
15. What is the formula for compounded interest?
A= I (1 + (r/c))^tC - where I is the investment - C is the number of times compounded annually - and t is the number of years.
62.5%
Pi is the ratio of a circle'S circumference to its diameter.
28. n = 8 - k = 2. n! / k!(n-k)!
16. Which quandrant is the lower right hand?
Yes - like radicals can be added/subtracted.
(a + b)^2
IV
... the square of the ratios of the corresponding sides.
17. What are the rational numbers?
9 & 6/7
All numbers which can be expressed as a ratio of two integers. (All integers and fractions.) (-2 - 1 - .25 - 1/2)
67 - 71 - 73
An infinite set.
18. For similar triangles - the ratio of their corresponding sides is 2:3. What is the ratio of their areas?
(6 x 2)(sqrt3 x sqrt5) = 12sqrt15
PEMDAS (Parentheses Exponents Multiplication/Division Addition/Subtraction)
x^(2(4)) =x^8 = (x^4)^2
4:9. The ratio of the areas of two similar triangles equals the square of the ratio of the corresponding sides.
19. Ratio of ages of Anna and Emma is 3:5 and of Emma and Nicolas is 3:5. What is the ratio of Anna to Nicholas' ages?
9 : 25
The graph of 3(x - 1)^2 is a translation (shift) of the graph one unit or space to the right.
Cd
70
20. Can you simplify sqrt72?
The shortest arc between points A and B on a circle'S diameter.
83.333%
Yes - because you can factor out a perfect square (36). Sqrt(36 x 2) = sqrt36 X sqrt2 = 6sqrt2.
1/(x^y)
21. Which quadrant is the upper right hand?
Yes - because you can factor out a perfect square (36). Sqrt(36 x 2) = sqrt36 X sqrt2 = 6sqrt2.
130pi
2.4. We calculate the area (6) and then turn the triangle on its side and use x as the height to calculate again. (5x)/2=6
I
22. Evaluate 4/11 + 11/12
1 & 37/132
37.5%
441000 = 1 10 10 10 21 * 21
$3 -500 in the 9% and $2 -500 in the 7%.
23. The number of degrees in the largest angle of a triangle inscribed in a circle - in which the diameter of the circle is one side of the triangle.
500
90 degrees
54sqrt3. (divide the hexagon into 6 congruent equilateral triangles.
27^(-4)
24. What is the side length of an equilateral triangle with altitude 6?
180 degrees
4sqrt3. The triangle can be divided into two equal 30-60-90 triangles with side 6 as the side in which 6 = xsqrt3. So x =2sqrt3...
Undefined
The sum of its digits is divisible by 3.
25. If the two sides of a triangle are unequal then the longer side...
Circumference = Diameter(pi). Use pythagorean theorem to find the diagonal of the square (the diameter).
An angle which is supplementary to an interior angle.
Lies opposite the greater angle
3
26. The perimeter of a square is 48 inches. The length of its diagonal is:
12sqrt2
The angle intersecting the circumference is always the largest angle - and is always 90 degrees.
The greatest value minus the smallest.
0
27. 0^0
Undefined
(p + q)/5
1/2 times 7/3
5 OR -5
28. In a triangle inscribed inside a circle - where the diameter is one side of the triangle - which angle is largest?
2(pi)r^2 + 2(pi)rh
The angle intersecting the circumference is always the largest angle - and is always 90 degrees.
75:11
The interesection of A and B.
29. What is a chord of a circle?
1:1:sqrt2
A chord is a line segment joining two points on a circle.
(a - b)^2
Angle/360 x 2(pi)r
30. The slope of a line perpendicular to (a/b)?
(6 x 2)(sqrt3 x sqrt5) = 12sqrt15
Members or elements
Its negative reciprocal. (-b/a)
12sqrt2
31. (12sqrt15) / (2sqrt5) =
The union of A and B.
10! / (10-3)! = 720
13pi / 2
(12/2) x (sqrt15 / sqrt5) = 6sqrt3
32. 5/8 in percent?
Sqrt 12
Sector area = (n/360) X (pi)r^2
The direction of the inequality is reversed.
62.5%
33. If 10800 is invested at a simple interest rate of 4% - what is the value of the investment after 18 months?
It is a function defined by more than one equation - where each equation applies to a different part of the domain of the function.
y = (x + 5)/2
$11 -448
(a - b)(a + b)
34. Convert 0.7% to a fraction.
16^8 - 64^5 = (4^3)^5 = 4^15 - 16^8=(4^2)^8 = 4^16
0
7 / 1000
1
35. a^2 - b^2
(a - b)(a + b)
All numbers which can be expressed as a ratio of two integers. (All integers and fractions.) (-2 - 1 - .25 - 1/2)
Move the decimal point to the right x places
A grouping of the members within a set based on a shared characteristic.
36. Formula to find a circle'S circumference from its diameter?
(6 x 2)(sqrt3 x sqrt5) = 12sqrt15
C = (pi)d
The shortest arc between points A and B on a circle'S diameter.
12.5%
37. What is the common monomial factor in the expression 4(c^3)d - (c^2)(d^2) + 2cd?
20.5
A reflection about the origin.
Use Pythagorean theorem twice. (Once across the surface and then a is the diagonal of surface and b is an edge).
Cd
38. Formula for the area of a sector of a circle?
Sector area = (n/360) X (pi)r^2
1/a^6
1/(x^y)
$11 -448
39. What is a major arc?
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
40. Number of degrees in a triangle
500
Sector area = (n/360) X (pi)r^2
75:11
180
41. What number between 70 & 75 - inclusive - has the greatest number of factors?
An infinite set.
6
72
The third side is greater than the difference and less than the sum.
42. (6sqrt3) x (2sqrt5) =
3 - -3
(6 x 2)(sqrt3 x sqrt5) = 12sqrt15
Sqrt 12
Diameter(Pi)
43. In similar hexagons - the ratio of the areas is 16:25. What is the ratio of their corresponding sides?
All real numbers which can'T be expressed as a ratio of two integers - positive and negative (pi - -sqrt3)
4:5
48
A= I (1 + (r/c))^tC - where I is the investment - C is the number of times compounded annually - and t is the number of years.
44. In a triangle where the two legs are 4 and 3 - what is the value of a line directly intersecting the middle coming from the meeting point of the two legs?
2.4. We calculate the area (6) and then turn the triangle on its side and use x as the height to calculate again. (5x)/2=6
180
A reflection about the origin.
31 - 37
45. What is the graph of f(x) shifted downward c units or spaces?
An arc is a portion of a circumference of a circle.
Angle/360 x 2(pi)r
75:11
F(x) - c
46. Legs: 3 - 4. Hypotenuse?
Area of the base X height = (pi)hr^2
5
No - only like radicals can be added.
Factors are few - multiples are many.
47. Define an 'expression'.
The sum of its digits is divisible by 3.
An algebraic expression is a combination of one of more terms. Terms in an expression are separated by either addition or subtraction signs. (3xy - 4ab - -5cd - x^2 + x - 1)
The longest arc between points A and B on a circle'S diameter.
x^(4+7) = x^11
48. A cylinder has surface area 22pi. If the cylinder has a height of 10 - what is its radius?
61 - 67
1
12! / 5!7! = 792
A= I (1 + (r/c))^tC - where I is the investment - C is the number of times compounded annually - and t is the number of years.
49. What is the 'Range' of a function?
The set of output values for a function.
(6 x 2)(sqrt3 x sqrt5) = 12sqrt15
0
...multiply by 100.
50. Write 10 -843 X 10^7 in scientific notation
1.0843 X 10^11
18
A reflection about the origin.
48
Sorry!:) No result found.
Can you answer 50 questions in 15 minutes?
Let me suggest you:
Browse all subjects
Browse all tests
Most popular tests
Major Subjects
Tests & Exams
AP
CLEP
DSST
GRE
SAT
GMAT
Certifications
CISSP go to https://www.isc2.org/
PMP
ITIL
RHCE
MCTS
More...
IT Skills
Android Programming
Data Modeling
Objective C Programming
Basic Python Programming
Adobe Illustrator
More...
Business Skills
Advertising Techniques
Business Accounting Basics
Business Strategy
Human Resource Management
Marketing Basics
More...
Soft Skills
Body Language
People Skills
Public Speaking
Persuasion
Job Hunting And Resumes
More...
Vocabulary
GRE Vocab
SAT Vocab
TOEFL Essential Vocab
Basic English Words For All
Global Words You Should Know
Business English
More...
Languages
AP German Vocab
AP Latin Vocab
SAT Subject Test: French
Italian Survival
Norwegian Survival
More...
Engineering
Audio Engineering
Computer Science Engineering
Aerospace Engineering
Chemical Engineering
Structural Engineering
More...
Health Sciences
Basic Nursing Skills
Health Science Language Fundamentals
Veterinary Technology Medical Language
Cardiology
Clinical Surgery
More...
English
Grammar Fundamentals
Literary And Rhetorical Vocab
Elements Of Style Vocab
Introduction To English Major
Complete Advanced Sentences
Literature
Homonyms
More...
Math
Algebra Formulas
Basic Arithmetic: Measurements
Metric Conversions
Geometric Properties
Important Math Facts
Number Sense Vocab
Business Math
More...
Other Major Subjects
Science
Economics
History
Law
Performing-arts
Cooking
Logic & Reasoning
Trivia
Browse all subjects
Browse all tests
Most popular tests