SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GRE Physics
Start Test
Study First
Subjects
:
gre
,
science
,
physics
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Doppler shift for light
? = 5/3
.5 CV²
div(E) = ?/e_0 - curl(E) = der(B)/der(t) - div(B) = 0 - curl(B) = µ_0J + µ_0e_0*der(E)/der(t)
? = ?_0 Sqrt[(1+v/c)/(1-v/c)]
2. Atom: Bohr Theory Ionization
Exponentially decreasing radial function
ma + kx = 0
DS = 0 - dQ = 0 - P V^? = constant
E = Z²*E1
3. Stoke'S Theorem
Always Real
DW/dq
Int ( A . dr) = Int ( del x A) dSurface
µ0 I / 2R
4. Volumetric Expansion
V = V0 + V0 a ?T
µ=s^2
F = qv×B
I = V/R exp(-t/RC)
5. Relativistic Energy
?mc²
? = ?0 root((1-v/c)/(1+v/c))
Exponential - E = -ma²/2hbar² - a is strength of delta wellt
A[B -C] = A[B -C]+[B -A]C [A -B] = -[B -A]
6. Time Lorentz Transformation
U = t^2 d/dt (logZ)
X_C = 1/(i?C)
Cos[?] Sin[?] -Sin[?] Cos[?]
? (t-vx/c²)
7. Law of Mass Action
?mv
Product ( nj ^ vj ) = Product(nqj ^ vj exp (-vj F(int)/Tau))
<?|O|?>
DW = P dV
8. Clausius-Clapeyron Equation
dQ = dW +dU
F = -2*m(? x r)
1s² - 2s² 2p6 - 3s² 3p6 3d¹°
Dp/dt = L / (t ?V)
9. Relativistic Momentum
F = µ0 q v I / 2pr
?mv
P1V1 - P2V2 / (? - 1)
?? = h/mc * (1-cos(?))
10. Magnetic field due to a segment of wire
C_eq = (? 1/C_i)^-1
U = t^2 d/dt (logZ)
B = µ0 I (sin(?1)-sin(?2))/(4pr) r = distance from point
Exp(N(µ-e)/t)
11. Mech: Force of Friction
?L/A - L = length - A = cross sectional area - rho is electrical resistivity
D/dt (.5*r^2 d?/dt) = 0 - r(?) = a(1-e²)/(1+ecos(?)) - T²aA³
F_f = µ*F_N
?? = h/mc * (1-cos(?))
12. Quant: Expectation Value
<?|O|?>
Dp/dt = L / (t ?V)
? = 1.22?/D
M? = 2dsin(?)
13. Biot-Savart law
Z²/n² (m_red/m_elec)
DB = ( µ_0 I/(4Pi) ) dl(cross)rhat/r^2
North to south; Earth has S magnetic pole at the N geographic pole and vice versa.
?s = 0 - ?l = ±1
14. SR: Spacetime Interval
ds² = (c*dt)² - ?(x_i)²
div(E) = ?/e_0 - curl(E) = der(B)/der(t) - div(B) = 0 - curl(B) = µ_0J + µ_0e_0*der(E)/der(t)
SR: ?=? - ß=? E = ?mc² = v(p²c² + m²c4)
1/ne - where n is charge carrier density
15. Bohr Model: Energy
Z²/n² (m_red/m_elec)
?~T
D/dt (.5*r^2 d?/dt) = 0 - r(?) = a(1-e²)/(1+ecos(?)) - T²aA³
? = 5/3
16. Thermo: Monatomic gas ?=?
? = 5/3
C_eq = ?C_i
L^2 |E - scl - m> = hbar^2 scl(scl+1) |E -scl -m> L_z |E - scl - m> = hbar m |E - scl - m>
In Zeeman effect - the contribution of electron spin to total angular momentum means that it isn'T always three lines and they are not always equally spaced.
17. Atom: Bohr Formula
J = ? Fdt
L = L_0 Sqrt[1-v^2/c^2]
E = Z²*E1
E ~ (1/(n_f)² - 1/(n_i)²) ~ 1/?
18. Doppler Shift for light
F = f* (c+v_r)/(c+v_s)
? = ?0 root((1-v/c)/(1+v/c))
ih_barL_z
V = -L di/dt
19. Bernoulli Equation
X_L = X_C or X_total = 0
µ0 I / 2pR
P(s) = (1/Z) Exp[-E(s)/(k T)] Z = S_s(Exp[-E(s)/(k T)])
P +1/2 ? v² + ?gh = Constant
20. A reversible process stays..
Infinitely close to equilibrium at all times
E = <?| H |?>
<?1|?2> = 0 ? Orthogonal
dQ = dW +dU
21. Error in the mean if each measurement has the same uncertainty s
S_mean = s/Sqrt[N]
Opposing charge induced upon conductor
Sin(?) = ?/d
? = 1.22?/D
22. 3 Laws of Thermo
Measurements close to true value
? = ?_0 Sqrt[(1+v/c)/(1-v/c)]
1. Heat is energy 2. Entropy never decreases 3. Entropy approaches a constant value as t -> 0...
?max = 2.898 x 10 -³ / T
23. Malus Law
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
24. Angular momentum - Central Force Motion
X_L = X_C or X_total = 0
F = qv×B
L = mr²d?/dt
0
25. Hall Coefficient
E²-p²c²
IR + Ldi/dt = 0 - I = I0e(-tL/R) Work = 1/2 L I0^2
1/ne - where n is charge carrier density
U = t^2 d/dt (logZ)
26. Dulong Petit Law
Faraday/Lenz: current inducted opposes the changing field
V(r) + L²2/2mr²
Exponential - E = -ma²/2hbar² - a is strength of delta wellt
Cv = dE/dT = 3R
27. Pauli matrices
? exp(-e/t)
Product ( nj ^ vj ) = Product(nqj ^ vj exp (-vj F(int)/Tau))
S = (hbar/2) s ;with S = S_x xhat + S_y yhat + S_z zhat -s = s_x xhat + s_y yhat + s_z zhat
Exponentially decreasing radial function
28. Invariant spatial quantity
Ct²-x²-y²-z²
div(E) = ?/e_0 - curl(E) = der(B)/der(t) - div(B) = 0 - curl(B) = µ_0J + µ_0e_0*der(E)/der(t)
Always Real
? exp(-e/t)
29. EM: Series Capacitance
u dm/dt
? = 5/3
C_eq = (? 1/C_i)^-1
T = I?²/2
30. Selection Rules
DW = P dV
H = T + V;qdot_i = dH/dp_i - pdot_i = dH/dq_i
?s = 0 - ?l = ±1
P(s) = (1/Z) Exp[-E(s)/(k T)] Z = S_s(Exp[-E(s)/(k T)])
31. Boltzmann / Canonical distribution
Cv = dE/dT = 3R
P(s) = (1/Z) Exp[-E(s)/(k T)] Z = S_s(Exp[-E(s)/(k T)])
V(r) + L²2/2mr²
A[B -C] = A[B -C]+[B -A]C [A -B] = -[B -A]
32. Focal point of mirrror with curvature
V = -L di/dt
Ct²-x²-y²-z²
F = µ0 q v I / 2pr
F = R/2
33. Thermo: Adiabatic Work vs Isothermal Work
W_A < W_I
P1V1 - P2V2 / (? - 1)
Interference: (m+.5)? = d sin(?) Diffraction: m? = w sin(?)
Z²/n² (m_red/m_elec)
34. Expectation value of the energy of state |?>
F = s * T4
E = <?| H |?>
Asin(?) = m?
X_L = i?L
35. Commutator identities ( [B -A C] - [A -B] )
DW/dq
A[B -C] = A[B -C]+[B -A]C [A -B] = -[B -A]
? = 1.22?/D
Exponential - E = -ma²/2hbar² - a is strength of delta wellt
36. Kepler'S Three Laws
E = Vmin : circle - E = 0 : parabola - E<0 : el - E>0 : h
? = ?0 root((1-v/c)/(1+v/c))
C = 4pe0 ab/(a-b) = inner and outer radii
D/dt (.5*r^2 d?/dt) = 0 - r(?) = a(1-e²)/(1+ecos(?)) - T²aA³
37. Adiabatic processes (dS - dQ - P and V)
1. Heat is energy 2. Entropy never decreases 3. Entropy approaches a constant value as t -> 0...
ds² = (c*dt)² - ?(x_i)²
DS = 0 - dQ = 0 - P V^? = constant
? = h/p
38. Mech: Impulse
DW = P dV
µ = Current * Area T = µ x B
NC?T
J = ? Fdt
39. Poisson distribution (µ and s)
µ0 I1I2 / (2pd)
µ=s^2
E = s/e_0
I = -(c ?t)^2 + d^2
40. Thermo: Blackbody Radiation
µ0 I / 2pR
? = h/p
C_eq = (? 1/C_i)^-1
F = s * T4
41. Resistance - length - area - rho
?L/A - L = length - A = cross sectional area - rho is electrical resistivity
N d flux / dt
I_z = I_x + I_y (think hoop symmetry)
1s² - 2s² 2p6 - 3s² 3p6 3d¹°
42. Addition of relativistic velocities
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
43. Induced EMF of solenoid
Product ( nj ^ vj ) = Product(nqj ^ vj exp (-vj F(int)/Tau))
KE = 1/2 * µ (dr/dt)² L = µ r x v
N d flux / dt
div(E) = ?/e_0 - curl(E) = der(B)/der(t) - div(B) = 0 - curl(B) = µ_0J + µ_0e_0*der(E)/der(t)
44. Doppler Shift in Frequency
I = Im (sinc²(a)) ; a = pai sin(?) / ?
F = µ0 q v I / 2pr
IR + Ldi/dt = 0 - I = I0e(-tL/R) Work = 1/2 L I0^2
F = f* (c+v_r)/(c+v_s)
45. Perpendicular axis theorem
Sin(?) = ?/d
I_z = I_x + I_y (think hoop symmetry)
J = E s - s = Conductivity - E = Electric field
F = -2*m(? x r)
46. EM: Parallel Capacitance
C_eq = ?C_i
W' = (w-v)/(1-w v/c^2) ; observer in S sees an object moving at velocity w; another frame S' moves at v wrt S.
P1V1 - P2V2 / (? - 1)
I = I_cm + md²
47. Spherical Capacitor Equation
P(s) = (1/Z) Exp[-E(s)/(k T)] Z = S_s(Exp[-E(s)/(k T)])
C = 4pe0 ab/(a-b) = inner and outer radii
F = I L X B
Exponential - E = -ma²/2hbar² - a is strength of delta wellt
48. Solid: Resistivity of Metal
S = k ln[O] ; dS = dQ/T
CdV/dt + V/R = 0 V(t) = V0 exp(-t/RC) I(t) = I(0) exp(-t/RC)
?~T
P(s) = (1/Z) Exp[-E(s)/(k T)] Z = S_s(Exp[-E(s)/(k T)])
49. Inductance of Solenoid
L = µ N² A / l : N = number of turns - A = cross sectional area -l = length
1/f = (n-1)(1/R1 - 1/R2) if both positive - they are convex - concave
M? = 2dsin(?)
PdV +dU
50. RLC resonance condition
W' = (w-v)/(1-w v/c^2) ; observer in S sees an object moving at velocity w; another frame S' moves at v wrt S.
F = µ0 q v I / 2pr
Ct²-x²-y²-z²
Z_C + Z_L = 0. Occurs when ?=1/Sqrt[L C]