SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GRE Physics
Start Test
Study First
Subjects
:
gre
,
science
,
physics
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Radiation (Larmor - and another neat fact)
X_L = i?L
P = µ_0 q^2 a^2/(6Pi c); No radiation along the axis of acceleration
div(E) = ?/e_0 - curl(E) = der(B)/der(t) - div(B) = 0 - curl(B) = µ_0J + µ_0e_0*der(E)/der(t)
X_C = 1/(i?C)
2. Thermo: Monatomic gas ?=?
Exp(N(µ-e)/t)
F = f* (c+v_r)/(c+v_s)
? = ?0 root((1-v/c)/(1+v/c))
? = 5/3
3. Doppler shift for light
KE = 1/2 * µ (dr/dt)² L = µ r x v
? = ?_0 Sqrt[(1+v/c)/(1-v/c)]
1/f = (n-1)(1/R1 - 1/R2) if both positive - they are convex - concave
E ~ (1/(n_f)² - 1/(n_i)²) ~ 1/?
4. Magnetic Field Through Ring
µ0 I / 2R
P² ~ R³
dQ = dW +dU
S = (hbar/2) s ;with S = S_x xhat + S_y yhat + S_z zhat -s = s_x xhat + s_y yhat + s_z zhat
5. Hamiltonian and Hamilton'S equations
H = T + V;qdot_i = dH/dp_i - pdot_i = dH/dq_i
V = V0 + V0 a ?T
U = t^2 d/dt (logZ)
1/f = (n-1)(1/R1 - 1/R2) if both positive - they are convex - concave
6. Volumetric Expansion
W_A < W_I
?~T
S = (hbar/2) s ;with S = S_x xhat + S_y yhat + S_z zhat -s = s_x xhat + s_y yhat + s_z zhat
V = V0 + V0 a ?T
7. Poisson distribution (µ and s)
Series: 1/k_eq = 1/k_1 + 1/k_2; Parallel: k_eq = k_1 + k_2
Hbar*?³/(p²c³exp(hbar?/t)-1)
E = Vmin : circle - E = 0 : parabola - E<0 : el - E>0 : h
µ=s^2
8. Lagrangian and Lagrange'S equation
E = Z²*E1
V = -L di/dt
L = T - V dL/dq = d/dt dL/dqdot
1/2 CV²
9. Invariant spatial quantity
µ0 I / 2R
U = t^2 d/dt (logZ)
Int ( A . dr) = Int ( del x A) dSurface
Ct²-x²-y²-z²
10. Hall Coefficient
? = 5/3
CdV/dt + V/R = 0 V(t) = V0 exp(-t/RC) I(t) = I(0) exp(-t/RC)
1/ne - where n is charge carrier density
V = -L di/dt
11. Thermo: Average Total Energy
S = k ln[O] ; dS = dQ/T
KE = 1/2 * µ (dr/dt)² L = µ r x v
D/dt (.5*r^2 d?/dt) = 0 - r(?) = a(1-e²)/(1+ecos(?)) - T²aA³
(° of Freedom)kT/2
12. Kepler'S Three Laws
.5 LI²
?max = 2.898 x 10 -³ / T
D/dt (.5*r^2 d?/dt) = 0 - r(?) = a(1-e²)/(1+ecos(?)) - T²aA³
T = I?²/2
13. Energy for orbits: Hyperbole - Ellipse - Parabola - Circle
Q = CVexp(-t/RC)
E = Vmin : circle - E = 0 : parabola - E<0 : el - E>0 : h
DW = P dV
1/ne - where n is charge carrier density
14. Partition Function
I = I_0 Cos[?]^2
? exp(-e/t)
Dv = -udm/m - v = v0 + u ln(m0/m)
F = s * T4
15. Ohm'S Law w/ current density
L = T - V dL/dq = d/dt dL/dqdot
Exponentially decreasing radial function
V(r) + L²2/2mr²
J = E s - s = Conductivity - E = Electric field
16. Adiabatic means
Faraday/Lenz: current inducted opposes the changing field
<?1|?2> = 0 ? Orthogonal
Isentropic
V(r) + L²2/2mr²
17. Quant: Eigenvalue of Hermitian Operator
Always Real
I_z = I_x + I_y (think hoop symmetry)
<?|O|?>
? exp(-e/t)
18. Mech: Rotational Energy
Interference: (m+.5)? = d sin(?) Diffraction: m? = w sin(?)
T = I?²/2
F = mv²/r
S = k ln[O] ; dS = dQ/T
19. Astro: p-p Chain
L^2 |E - scl - m> = hbar^2 scl(scl+1) |E -scl -m> L_z |E - scl - m> = hbar m |E - scl - m>
4H + 2e- ? He +2? + 6?
?mv
E = Vmin : circle - E = 0 : parabola - E<0 : el - E>0 : h
20. Angular momentum - Central Force Motion
E = Vmin : circle - E = 0 : parabola - E<0 : el - E>0 : h
?~T
L = mr²d?/dt
Z_c = -i/(?C) ; Z_L = i ? L
21. Atom: Bohr Formula
X_C = 1/(i?C)
Exponential - E = -ma²/2hbar² - a is strength of delta wellt
?s = 0 - ?l = ±1
E ~ (1/(n_f)² - 1/(n_i)²) ~ 1/?
22. Thermo: 1st Law
dQ = dW +dU
V(r) + L²2/2mr²
1/2 CV²
D/dt (.5*r^2 d?/dt) = 0 - r(?) = a(1-e²)/(1+ecos(?)) - T²aA³
23. Atom: Hydrogen Wave Function Type
µ0 I / 2pR
J/(ne) n: atom density
F = mv²/r
Exponentially decreasing radial function
24. Relativistic Energy
Asin(?) = m?
Z_C + Z_L = 0. Occurs when ?=1/Sqrt[L C]
?mc²
E²-p²c²
25. Mech: Centripetal Force
E = <?| H |?>
F = mv²/r
X_L = X_C or X_total = 0
Series: 1/k_eq = 1/k_1 + 1/k_2; Parallel: k_eq = k_1 + k_2
26. Rotation matrix (2x2)
<?1|?2> = 0 ? Orthogonal
Cos[?] Sin[?] -Sin[?] Cos[?]
µ = m_e/2
ma + kx = 0
27. Quant: Orthogonality of States
I ' = I cos²(?)
<?1|?2> = 0 ? Orthogonal
KE = 1/2 * µ (dr/dt)² L = µ r x v
D/dt (.5*r^2 d?/dt) = 0 - r(?) = a(1-e²)/(1+ecos(?)) - T²aA³
28. RLC resonance condition
?scl = +/-1;?m = 0 - +/-1;?S_tot = 0;(?j = ?scl + ?S_tot)
S = (hbar/2) s ;with S = S_x xhat + S_y yhat + S_z zhat -s = s_x xhat + s_y yhat + s_z zhat
Q = U + W Q = heat in system - U = total energy in system - W = work done by gas
Z_C + Z_L = 0. Occurs when ?=1/Sqrt[L C]
29. Effective Potential
V(r) + L²2/2mr²
? = h/mv
<?1|?2> = 0 ? Orthogonal
?s = 0 - ?l = ±1
30. Coriolis Force
? (t-vx/c²)
F = -2*m(? x r)
C_eq = (? 1/C_i)^-1
µ = m_e/2
31. Lab: Accuracy of Measurements
1s² - 2s² 2p6 - 3s² 3p6 3d¹°
I_z = I_x + I_y (think hoop symmetry)
Measurements close to true value
?mc²
32. Relativistic length contraction
CdV/dt + V/R = 0 V(t) = V0 exp(-t/RC) I(t) = I(0) exp(-t/RC)
L = L_0 Sqrt[1-v^2/c^2]
E = Z²*E1
?_max = b/T
33. Adiabatic processes (dS - dQ - P and V)
E = s/e_0
Exponentially decreasing radial function
DS = 0 - dQ = 0 - P V^? = constant
L = L_0 Sqrt[1-v^2/c^2]
34. Single Slit Diffraction Intensity
? = ?0 root((1-v/c)/(1+v/c))
P +1/2 ? v² + ?gh = Constant
I = Im (sinc²(a)) ; a = pai sin(?) / ?
Dp/dt = L / (t ?V)
35. Current in resistor in RC circuit
<?1|?2> = 0 ? Orthogonal
I = V/R exp(-t/RC)
? exp(-e/t)
F = mv²/r
36. EM: Maxwell'S equations
u dm/dt
M? = 2dsin(?)
dQ = dW +dU
div(E) = ?/e_0 - curl(E) = der(B)/der(t) - div(B) = 0 - curl(B) = µ_0J + µ_0e_0*der(E)/der(t)
37. Perturbations
S = (hbar/2) s ;with S = S_x xhat + S_y yhat + S_z zhat -s = s_x xhat + s_y yhat + s_z zhat
North to south; Earth has S magnetic pole at the N geographic pole and vice versa.
? = h/p
H = H_0 + ?H
38. Triplet/singlet states: symmetry and net spin
dQ = dW +dU
I ' = I cos²(?)
1. Heat is energy 2. Entropy never decreases 3. Entropy approaches a constant value as t -> 0...
Triplet: symmetric - net spin 1 Singlet: antisymmetric - net spin 0
39. Bohr Model: Energy
F = R/2
<?|O|?>
µ=s^2
Z²/n² (m_red/m_elec)
40. Work (P - V)
S_mean = s/Sqrt[N]
P1V1 - P2V2 / (? - 1)
DS = 0 - dQ = 0 - P V^? = constant
?mc²
41. Thin Film Theory: Constructive / Destructive Interference
E = <?| H |?>
Const: 2t = (n +.5)? Destructive 2t = n?
F = f* (c+v_r)/(c+v_s)
?scl = +/-1;?m = 0 - +/-1;?S_tot = 0;(?j = ?scl + ?S_tot)
42. Thermo: Isothermal
ds² = (c*dt)² - ?(x_i)²
dU = 0 ? dS = ?dW/T
E = s/e_0
I = V/R exp(-t/RC)
43. Magnetic field due to a segment of wire
E = Vmin : circle - E = 0 : parabola - E<0 : el - E>0 : h
E = <?| H |?>
B = µ0 I (sin(?1)-sin(?2))/(4pr) r = distance from point
Q = CVexp(-t/RC)
44. Thermo: Adiabatic Work vs Isothermal Work
?s = 0 - ?l = ±1
W_A < W_I
ma + kx = 0
Exponentially decreasing radial function
45. Mean electron drift speed
When you apply a uniform electric field - it induces a dipole moment and interacts with it - and that effect depends on |mj |. So if j is an integer - splits (asymmetrically) into j+1 levels - and if j is a half integer - splits (asymmetrically) into
DS = 0 - dQ = 0 - P V^? = constant
J/(ne) n: atom density
E = s/e_0
46. EM: Bremsstrahlung (translation)
1/ne - where n is charge carrier density
Braking Radiation
Dp/dt = L / (t ?V)
(3/2) n R ?t
47. Quant: Commutator Relation [AB -C]
A[B -C] + [A -C]B
<?1|?2> = 0 ? Orthogonal
Int ( A . dr) = Int ( del x A) dSurface
Asin(?) = m?
48. Boltzmann / Canonical distribution
P(s) = (1/Z) Exp[-E(s)/(k T)] Z = S_s(Exp[-E(s)/(k T)])
DS = 0 - dQ = 0 - P V^? = constant
Hbar*?³/(p²c³exp(hbar?/t)-1)
Const: 2t = (n +.5)? Destructive 2t = n?
49. Charge in Capacitor
<T> = 1/2 * <dV/dx>
Q = CVexp(-t/RC)
T^2 = k R^3 - k=constant
? exp(-e/t)
50. Polarizers - intensity when crossed at ?
.5 CV²
ds² = (c*dt)² - ?(x_i)²
I = I_0 Cos[?]^2
?~T