SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GRE Physics
Start Test
Study First
Subjects
:
gre
,
science
,
physics
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Volumetric Expansion
Braking Radiation
B = µ0 I n
V = V0 + V0 a ?T
Always Real
2. Angular momentum - Central Force Motion
W_A < W_I
DS = 0 - dQ = 0 - P V^? = constant
L = mr²d?/dt
DW/dq
3. Partition Function
Q = CVexp(-t/RC)
F = -2*m(? x r)
E_n = -µ c^2 Z a^2 / (2n^2) - with µ = m_1 m_2 / (m_1 + m_2)
? exp(-e/t)
4. Quant: Expectation Value
L = µ N² A / l : N = number of turns - A = cross sectional area -l = length
U - ts = -tlog(Z)
?max = 2.898 x 10 -³ / T
<?|O|?>
5. Clausius-Clapeyron Equation
J = ? Fdt
C_eq = (? 1/C_i)^-1
F = I L X B
Dp/dt = L / (t ?V)
6. EM: AC Resonance
F = µ0 q v I / 2pr
X_L = X_C or X_total = 0
U - ts = -tlog(Z)
Cos[?] Sin[?] -Sin[?] Cos[?]
7. Complex impedance (expressions for capacitor and inductor)
Z_c = -i/(?C) ; Z_L = i ? L
Triplet: symmetric - net spin 1 Singlet: antisymmetric - net spin 0
1s² - 2s² 2p6 - 3s² 3p6 3d¹°
I = Im (sinc²(a)) ; a = pai sin(?) / ?
8. Malus Law
Warning
: Invalid argument supplied for foreach() in
/var/www/html/basicversity.com/show_quiz.php
on line
183
9. Stefan-Boltzmann law for blackbodies (power per area and T)
P/A = s T^4
DW/dq
C_eq = (? 1/C_i)^-1
E²-p²c²
10. E field of a capacitor (d->0)
Exp(N(µ-e)/t)
E = s/e_0
F = -2*m(? x r)
P = µ_0 q^2 a^2/(6Pi c); No radiation along the axis of acceleration
11. Stoke'S Theorem
.5 CV²
(3/2) n R ?t
Int ( A . dr) = Int ( del x A) dSurface
S = k ln[O] ; dS = dQ/T
12. Mean electron drift speed
Z_C + Z_L = 0. Occurs when ?=1/Sqrt[L C]
J/(ne) n: atom density
Asin(?) = m?
µ0 I1I2 / (2pd)
13. Kepler'S Three Laws
?max = 2.898 x 10 -³ / T
W_A < W_I
D/dt (.5*r^2 d?/dt) = 0 - r(?) = a(1-e²)/(1+ecos(?)) - T²aA³
Series: 1/k_eq = 1/k_1 + 1/k_2; Parallel: k_eq = k_1 + k_2
14. Invariant spatial quantity
?mc²
Series: 1/k_eq = 1/k_1 + 1/k_2; Parallel: k_eq = k_1 + k_2
I = Im (sinc²(a)) ; a = pai sin(?) / ?
Ct²-x²-y²-z²
15. Source Free RL Circuit
Interference: (m+.5)? = d sin(?) Diffraction: m? = w sin(?)
µ0 I / 2pR
X_L = i?L
IR + Ldi/dt = 0 - I = I0e(-tL/R) Work = 1/2 L I0^2
16. Mech: Force of Friction
F_f = µ*F_N
T^2 = k R^3 - k=constant
IR + Ldi/dt = 0 - I = I0e(-tL/R) Work = 1/2 L I0^2
V = V0 + V0 a ?T
17. Atom: Hydrogen Wave Function Type
Interference: (m+.5)? = d sin(?) Diffraction: m? = w sin(?)
Exponentially decreasing radial function
0
Int ( A . dr) = Int ( del x A) dSurface
18. Error in the mean if each measurement has the same uncertainty s
?~T
(° of Freedom)kT/2
S_mean = s/Sqrt[N]
PdV +dU
19. Relativistic length contraction
L = L_0 Sqrt[1-v^2/c^2]
I = Im (sinc²(a)) ; a = pai sin(?) / ?
DW = P dV
?s = 0 - ?l = ±1
20. EM: SHO (Hooke)
qvb = mv²/R
div(E) = ?/e_0 - curl(E) = der(B)/der(t) - div(B) = 0 - curl(B) = µ_0J + µ_0e_0*der(E)/der(t)
ma + kx = 0
4H + 2e- ? He +2? + 6?
21. Wein'S Displacement Law
PdV +dU
DW = P dV
(° of Freedom)kT/2
?max = 2.898 x 10 -³ / T
22. Inductance of Solenoid
.5 LI²
L = µ N² A / l : N = number of turns - A = cross sectional area -l = length
1/vLC
B = µ0 I n
23. Thermo: 1st Law
A[B -C] + [A -C]B
F = s * T4
dQ = dW +dU
1/vLC
24. Mech: Virial Theorem
? (t-vx/c²)
<T> = -<V>/2
Measurements close to true value
X_L = X_C or X_total = 0
25. Relativistic Momentum
P/A = s T^4
ds² = (c*dt)² - ?(x_i)²
u dm/dt
?mv
26. Atom: Orbital Config
4H + 2e- ? He +2? + 6?
div(E) = ?/e_0 - curl(E) = der(B)/der(t) - div(B) = 0 - curl(B) = µ_0J + µ_0e_0*der(E)/der(t)
<?|O|?>
1s² - 2s² 2p6 - 3s² 3p6 3d¹°
27. First law of thermodynamics (explain direction of energy for each term)
Q = U + W Q = heat in system - U = total energy in system - W = work done by gas
u dm/dt
Measurements close to true value
Product ( nj ^ vj ) = Product(nqj ^ vj exp (-vj F(int)/Tau))
28. Lagrangian and Lagrange'S equation
?L/A - L = length - A = cross sectional area - rho is electrical resistivity
? = ?_0 Sqrt[(1+v/c)/(1-v/c)]
?s = 0 - ?l = ±1
L = T - V dL/dq = d/dt dL/dqdot
29. Solid: Resistivity of Semi-Conductor
F = R/2
1s² - 2s² 2p6 - 3s² 3p6 3d¹°
?~1/T
P² ~ R³
30. Virial Theorem
Z_C + Z_L = 0. Occurs when ?=1/Sqrt[L C]
ma + kx = 0
1. Heat is energy 2. Entropy never decreases 3. Entropy approaches a constant value as t -> 0...
<T> = 1/2 * <dV/dx>
31. Lensmaker Equation - Thin Lens
Q = U + W Q = heat in system - U = total energy in system - W = work done by gas
1/f = (n-1)(1/R1 - 1/R2) if both positive - they are convex - concave
µ = m_e/2
F = I L X B
32. Mech: Rotational Energy
F = -2*m(? x r)
H = H_0 + ?H
T = I?²/2
I = Im (sinc²(a)) ; a = pai sin(?) / ?
33. EM: Electromagnetic inertia
J = ? Fdt
L^2 |E - scl - m> = hbar^2 scl(scl+1) |E -scl -m> L_z |E - scl - m> = hbar m |E - scl - m>
Faraday/Lenz: current inducted opposes the changing field
C_eq = (? 1/C_i)^-1
34. Source-free RC Circuit
Triplet: symmetric - net spin 1 Singlet: antisymmetric - net spin 0
CdV/dt + V/R = 0 V(t) = V0 exp(-t/RC) I(t) = I(0) exp(-t/RC)
D/dt (.5*r^2 d?/dt) = 0 - r(?) = a(1-e²)/(1+ecos(?)) - T²aA³
I = V/R exp(-t/RC)
35. EM: Bremsstrahlung (translation)
I = I_cm + (1/2)m d^2
F = f* (c+v_r)/(c+v_s)
Braking Radiation
A[B -C] + [A -C]B
36. Quant: Commutator Relation [AB -C]
Let w_i = 1/s_i^2;x_wav = S(w_i x_i) / Sw_i - s_xwav = 1/Sw_i
V = V0 + V0 a ?T
?max = 2.898 x 10 -³ / T
A[B -C] + [A -C]B
37. Lab: Precision of Measurements
DB = ( µ_0 I/(4Pi) ) dl(cross)rhat/r^2
Measurements close to mean
Sin(?) = ?/d
U - ts = -tlog(Z)
38. Thermo: Adiabatic Work vs Isothermal Work
P1V1 - P2V2 / (? - 1)
W_A < W_I
J = E s - s = Conductivity - E = Electric field
Let w_i = 1/s_i^2;x_wav = S(w_i x_i) / Sw_i - s_xwav = 1/Sw_i
39. Magnetic Field For Current in Long Wire
F = µ0 q v I / 2pr
I ' = I cos²(?)
µ0 I / 2pR
Z = ?g_i*exp(-E/kT)
40. Energy for orbits: Hyperbole - Ellipse - Parabola - Circle
E = Vmin : circle - E = 0 : parabola - E<0 : el - E>0 : h
? (t-vx/c²)
1/vLC
(3/2) n R ?t
41. Quant: Orthogonality of States
? = 5/3
qvb = mv²/R
<?1|?2> = 0 ? Orthogonal
Braking Radiation
42. Time Lorentz Transformation
? (t-vx/c²)
E = <?| H |?>
4H + 2e- ? He +2? + 6?
µ = m_e/2
43. EM: Electric Field inside of Conductor
0
SR: ?=? - ß=? E = ?mc² = v(p²c² + m²c4)
P = µ_0 q^2 a^2/(6Pi c); No radiation along the axis of acceleration
F = mv²/r
44. Bar magnets -- direction of B field lines - earth'S B field
North to south; Earth has S magnetic pole at the N geographic pole and vice versa.
Q = CVexp(-t/RC)
?= h/v(2mE)
.5 CV²
45. Energy in terms of partition function
?scl = +/-1;?m = 0 - +/-1;?S_tot = 0;(?j = ?scl + ?S_tot)
U = t^2 d/dt (logZ)
P/A = s T^4
<T> = -<V>/2
46. Springs in series/parallel
Series: 1/k_eq = 1/k_1 + 1/k_2; Parallel: k_eq = k_1 + k_2
Sin(?) = ?/d
<T> = -<V>/2
T^2 = k R^3 - k=constant
47. Mech: Centripetal Force
(3/2) n R ?t
Ct²-x²-y²-z²
F = mv²/r
Exponential - E = -ma²/2hbar² - a is strength of delta wellt
48. Commutator identities ( [B -A C] - [A -B] )
V = -L di/dt
Const: 2t = (n +.5)? Destructive 2t = n?
A[B -C] = A[B -C]+[B -A]C [A -B] = -[B -A]
<T> = -<V>/2
49. Force/length between two wires
Product ( nj ^ vj ) = Product(nqj ^ vj exp (-vj F(int)/Tau))
µ0 I1I2 / (2pd)
Opposing charge induced upon conductor
F = R/2
50. Magnetic Field of a long solenoid
Z²/n² (m_red/m_elec)
?_max = b/T
B = µ0 I n
u dm/dt