SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
AP Calculus Ab
Start Test
Study First
Subjects
:
math
,
ap
,
calculus
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. A function whose rule is given by a fraction whose numerator and denominator are polynomials and whose denominator is not 0
rational function
integrable function
limit of integration
law of cosine
2. A limit in which f(x) increases or decreases without bound - as x approaches c
limit of integration
mean value theorem for definite integrals
inflection point
infinite limit
3. The process of evaluating an indefinite integral
domain
continuity on an interval
Antidifferentiation- check
local linearity
4. Any number that can be written in the form a + bi - where a and b are real numbers and i is the imaginary unit
complex number
parallel curve
left hand limit
exponential growth and decay
5. A method for finding integrals. Using the fundamental theorem of calculus often requires finding an antiderivative.
parallel curve
extreme value theorem
normal line
integration by substitution
6. A rectangular sum of the area under a curve where the domain is divided into sub-intervals and the height of each rectangle is the function value at the right-most point of the sub-interval
infinite limit
Rolle's Theorem
right hand sum
odd function
7. A function that is continuous on both the left and right side at that point
power series
first derivative test
continuity at a point
extreme value theorem
8. Ratio between the length of an arc and its radius
extremum
cartesian coordinate system
exponential growth and decay
Radian
9. Intervals in which the second derivative is positive
differentiation
concave up
derivative
extreme value theorem
10. A²=(b²+c²)-2(ab)Cos(A)
law of cosine
extremum
circular function
amplitude
11. When testing critical values - if the first derivative changes from negative to zero to positive - then that critical value is a local minimum of the function. If the first derivative changes from positive to zero of negative - then that critical val
limit of integration
concave down
first derivative test
extremum
12. A basic definition in calculus f(x+h)-f(x)/h h doesn't equal 0
difference quotient
order of a derivative
Algebraic function
integrand
13. N(1-r)^x
extreme value theorem
decay model
piecewise defined function
limit at infinity
14. Functions of angles
integrable function
circular function
order of a derivative
differential equation
15. Series from n=0 to infinity of c_n(x-a)^n where a is it's center and c_n is a coefficient.
power series
endpoint extremum
differential equation
instantaneous rate of change
16. d = v[( x2 - x1)² + (y2 - y1)²]
instantaneous rate of change
distance formula
Antidifferentiation- check
even function
17. The rate at which velocity changes over time; an object accelerates if its speed - direction - or both change
dummy variable of integration
complex number
related rates
acceleration
18. Zero of a function; a solution of the equation f(x)=0 is a zero of the function f or a root of the equation of an x-intercept of the graph
root of an equation
constant of integration
instantaneous rate of change
law of sines
19. A rectangular sum of the area under a curve where the domain is divided into sub-intervals and the height of each rectangle is the function value at the left most point of the sub-interval
left hand sum
continuity at a point
odd function
removable discontinuity
20. The value that a function is approaching as x approaches a given value through values less than x
parallel curve
dummy variable of integration
extremum
left hand limit
21. If there is some number b that is less than or equal to every number in the range of f
bounded below
concave down
optimization
removable discontinuity
22. An undetermined constant added to every result of integration (the added +c)
constant of integration
right hand sum
Fundamental theorem of calculus
decay model
23. If f is continuous on [a -b] then at some point - c in [a -b] - f(c)= (1/(a-b))*?f(x)dx (with bounds a -b)
numerical derivative
mean value theorem for definite integrals
differential equation
differential
24. A function F is called an __________ of a function f on a given open interval if F'(x) = f(x) for all x in the interval - Add + c at the end
antiderivative
concave down
leibniz notation
constant function
25. A function is locally linear at x = c if the graph fo the function looks more and more like the tangent to the graph as one zooms in on the point (c - f(c))
local linearity
constant function
first derivative test
order of a derivative
26. The local and global maximums and minimums of a function
extremum
Antidifferentiation- check
continuous function
exponential growth and decay
27. sinA/a=sinB/b=sinC/c
second derivative test
law of sines
perpendicular curves
cosecant function
28. The value of the function approaches as x increases or decreases without bound
limit at infinity
partition of an interval
transcendental function
Radian
29. A straight line that is the limiting value of a curve
first derivative test
asymptote
odd function
leibniz notation
30. The reciprocal of the sine function
cross sectional area
cosecant function
infinite limit
parallel curve
31. The value of the function at a critical point
parallel curve
exponential growth and decay
indefinite integral
critical value
32. The mathematical formulation corresponding to a continuous time model; an equation involving derivatives
non removable discontinuity
differential equation
indefinite integral
concave down
33. The limit of f as x approaches c from the right
continuous function
right hand limit
root of an equation
end behavior
34. The integral of a rate of change is called the total change: ?(from a to b) F'(x)dx = F(b)-F(a) -find anti-derivatives
antiderivative
circular function
Total change Theorem
differentiation
35. The function that is integrated in an integral
Total change Theorem
integrand
power series
transcendental function
36. If f is continuous at x = a and lim f'(x) (from the left) = lim f'(x) (from the right) - then f is differentiable at x = a
rational function
second derivative test
cartesian coordinate system
differentiability
37. A function that is a fixed numerical value for all elements of the domain of the function
constant function
parameter
normal line
asymptote
38. A determining or characteristic element; a factor that shapes the total outcome; a limit - boundary
parameter
parallel curve
derivative
antiderivative
39. The maximum distance that the particles of a wave's medium vibrate from their rest position
logarithm laws
amplitude
initial condition
linear approximation
40. An approximation of the derivative of a function using a numerical algorithm numerical integration - an approximation of the integral of a function using a numerical algorithm oddfunction- f(-x)=-f(x)
removable discontinuity
Antidifferentiation- check
numerical derivative
continuity on an interval
41. dy/dx
related rates
end behavior
even function
leibniz notation
42. A point that represents the maximum value a function assumes over its domain
perpendicular curves
related rates
absolute maximum
power series
43. Has limits a & b - find antiderivative - F(b) - F(a) find area under the curve
Rolle's Theorem
optimization
definite integral
conic section
44. If y=f(x) is continuous at every point of the close interval [a -b] and differentiable at every point of its interior (a -b) - then there is at least one point c in (a -b) at which f'(c)= [f(b)-f(a)]/(b-a)
second derivative test
infinite limit
left hand limit
Mean Value theorem for derivatives
45. The smallest y-value of the function
Fundamental theorem of calculus
absolute minimum
domain
right hand sum
46. When an absolute maximum or minimum occurs at the endpoint of the interval for which the function is defined
endpoint extremum
right hand limit
Antidifferentiation- check
infinite limit
47. T = ?X / 2 (yo + 2y1 + 2y2 ... + 2y + y) - A method of approximating to an intergral as the limit of a sum of areas of trapezoids. Can be done by averaging a left hand sum and a right hand sum
trapezoidal rule
left hand sum
conic section
bounded
48. A method of representing the location of a point using an ordered pair of real numbers of the form (x -y)
Radian
dummy variable of integration
left hand sum
cartesian coordinate system
49. Imaginary line drawn perpendicular to the surface of a mirror or any surface
bounded
normal line
absolute value
constant function
50. A function that is continuous at every point on the interval
left hand sum
critical point
continuity on an interval
integration by substitution