SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
CLEP General Math: Number Sense - Patterns - Algebraic Thinking
Start Test
Study First
Subjects
:
clep
,
math
,
algebra
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. × - ( )( ) - · - 1. Multiply the numbers (ignoring the signs)2. The answer is positive if they have the same signs. 3. The answer is negative if they have different signs. 4. Alternatively - count the amount of negative numbers. If there are an even
In Euclidean four-space
Commensurability
Sign Rules for Division
Multiplication
2. The system that Euclid used in The Elements
The Kissing Circle
Axiomatic Systems
Answer the Question
Hyperland
3. The fundamental theorem of arithmetic says that
Multiplication
a · c = b · c for c does not equal 0
Divisible
each whole number can be uniquely decomposed into products of primes.
4. The process of taking a complicated signal and breaking it into sine and cosine components.
Hypersphere
Fourier Analysis
Law of Large Numbers
Greatest Common Factor (GCF)
5. If the sum of its digits is divisible by 9 (ex: 3591 is divisible by 9 since 3 + 5 + 9 + 1 = 18 is divisible by 9).
Commutative Property of Multiplication
General Relativity
The Commutative Property of Addition
A number is divisible by 9
6. Whether or not we hear waves as sound has everything to do with their _____________ - or how many times every second the molecules switch from compression to rarefaction and back to compression again - and their intensity - or how much the air is com
Frequency
Figurate Numbers
Multiplication
Divisible
7. N = {1 - 2 - 3 - 4 - 5 - . . .}.
Non-Euclidian Geometry
Commutative Property of Multiplication:
the set of natural numbers
a
8. Dimension is how mathematicians express the idea of degrees of freedom
Tone
Dimension
Standard Deviation
Irrational
9. A graph in which every node is connected to every other node is called a complete graph.
Multiplying both Sides of an Equation by the Same Quantity
Hypercube
Figurate Numbers
Complete Graph
10. Let a and b represent two whole numbers. Then - a + b = b + a.
The Commutative Property of Addition
Multiplication by Zero
perimeter
Poincare Disk
11. A factor tree is a way to visualize a number's
prime factors
Fundamental Theorem of Arithmetic
Euler Characteristic
Fourier Analysis and Synthesis
12. If a represents any whole number - then a
Topology
Least Common Multiple (LCM)
Associate Property of Addition
Multiplication by Zero
13. This model is at the forefront of probability research. Mathematicians use it to model traffic patterns in an attempt to understand flow rates and gridlock - among other things.
Flat Land
The BML Traffic Model
Division is not Associative
Properties of Equality
14. 4 more than a certain number is 12
1. Set up a Variable Dictionary. 3. Solve the Equation. 4. Answer the Question. 5. Look Back.
Solution
Spaceland
4 + x = 12
15. Use parentheses - brackets - or curly braces to delimit the part of an expression you want evaluated first.
Figurate Numbers
Grouping Symbols
Normal Distribution
Properties of Equality
16. If on a surface there is no meaningful way to tell an object's orientation (left or right handedness) - the surface is said to be non-orientable.
Variable
The Set of Whole Numbers
The Kissing Circle
Non-Orientability
17. Requirements for Word Problem Solutions.
1. Set up a Variable Dictionary. 3. Solve the Equation. 4. Answer the Question. 5. Look Back.
Factor Tree Alternate Approach
Galton Board
Additive Inverse:
18. A flat map of hyperbolic space.
B - 125 = 1200
˜
Commensurability
Poincare Disk
19. If we start with a number x and multiply by a number a - then dividing the result by the number a returns us to the original number x. In symbols - a
Multiplication by Zero
a · c = b · c for c does not equal 0
The inverse of multiplication is division
Ramsey Theory
20. Solving Equations
1. Simplify the expression on either side of the equation. 2. Gather the variable term on the left-hand side (LHS) by adding to both sides. the opposite of the variable term on the right-hand side (RHS). Note: either side is fine but we will consiste
Invarient
Prime Deserts
Set up an Equation
21. Codifies the 'average behavior' of a random event and is a key concept in the application of probability.
Set up an Equation
Bijection
Expected Value
bar graph
22. Means approximately equal.
Galois Theory
˜
Spherical Geometry
each whole number can be uniquely decomposed into products of primes.
23. In a mathematical sense - it is a transformation that leaves an object invariant. Symmetry is perhaps most familiar as an artistic or aesthetic concept. Designs are said to be symmetric if they exhibit specific kinds of balance - repetition - and/or
Amplitude
The Associative Property of Multiplication
Symmetry
Galois Theory
24. A point in one dimension requires only one number to define it. The number line is a good example of a one-dimensional space.
Line Land
Transfinite
Rational
Intrinsic View
25. Mathematical statement that equates two mathematical expressions.
Equation
Factor Trees
Factor Tree Alternate Approach
De Bruijn Sequence
26. Negative
Sign Rules for Division
Standard Deviation
Hyperbolic Geometry
General Relativity
27. It is important to note that this step does not imply that you should simply check your solution in your equation. After all - it's possible that your equation incorrectly models the problem's situation - so you could have a valid solution to an inco
Commutative Property of Addition:
Ramsey Theory
Look Back
The inverse of addition is subtraction
28. Original Balance minus River Tam's Withdrawal is Current Balance
Central Limit Theorem
B - 125 = 1200
Exponents
the set of natural numbers
29. To describe and extend a numerical pattern
Wave Equation
Principal Curvatures
1. Find a relationship between the first and second numbers. 2. Then we see if the relationship is true for the second and third numbers - the third and fourth - and so on.
Distributive Property:
30. If a = b then
Galton Board
The Additive Identity Property
˜
a · c = b · c for c does not equal 0
31. When comparing two whole numbers a and b - only one of three possibilities is true: a < b or a = b or a > b.
Galois Theory
Commensurability
Comparison Property
Box Diagram
32. GThe mathematical study of space. The geometry of a space goes hand in hand with how one defines the shortest distance between two points in that space.
Geometry
A number is divisible by 5
Denominator
Conditional Probability
33. A topological object that can be used to study the allowable states of a given system.
Configuration Space
The Additive Identity Property
Primes
1. Set up a Variable Dictionary. 3. Solve the Equation. 4. Answer the Question. 5. Look Back.
34. An equation is a numerical value that satisfies the equation. That is - when the variable in the equation is replaced by the solution - a true statement results.
Solution
A prime number
Standard Deviation
Prime Number
35. This area of mathematics relates symmetry to whether or not an equation has a 'simple' solution.
Torus
Galois Theory
Central Limit Theorem
The Set of Whole Numbers
36. Is a symbol (usually a letter) that stands for a value that may vary.
Variable
4 + x = 12
Solution
Rarefactior
37. Perform all additions and subtractions in the order presented
Commutative Property of Multiplication
The Same
left to right
A number is divisible by 5
38. 1. Find the prime factorizations of each number.
Permutation
The Additive Identity Property
Greatest Common Factor (GCF)
Fourier Analysis and Synthesis
39. A + (-a) = (-a) + a = 0
Rarefactior
Non-Orientability
Pigeonhole Principle
Additive Inverse:
40. (a · b) · c = a · (b · c)
Expected Value
Multiplication by Zero
Stereographic Projection
Associative Property of Multiplication:
41. Also known as gluing diagrams - are a convenient way to examine intrinsic topology.
Amplitude
The Additive Identity Property
Box Diagram
Products and Factors
42. This step is easily overlooked. For example - the problem might ask for Jane's age - but your equation's solution gives the age of Jane's sister Liz. Make sure you answer the original question asked in the problem. Your solution should be written in
Standard Deviation
Multiplicative Identity:
Answer the Question
Composite Numbers
43. Objects are topologically equivalent if they can be continuously deformed into one another. Properties that are preserved during this process are called topological invariants.
Additive Identity:
Irrational
evaluate the expression in the innermost pair of grouping symbols first.
Hamilton Cycle
44. Has no factors other than 1 and itself
A prime number
The Riemann Hypothesis
Commutative Property of Addition:
Divisible
45. Breaks a complicated signal into a combination of simple sine waves. Fourier synthesis does the opposite - constructing a complicated signal from simple sine waves.
Permutation
Fourier Analysis and Synthesis
1. Set up a Variable Dictionary. 3. Solve the Equation. 4. Answer the Question. 5. Look Back.
Fundamental Theorem of Arithmetic
46. Topological objects are categorized by their _______ (number of holes). The genus of a surface is a feature of its global topology.
Topology
Order of Operations - PEMDAS 'Please Excuse My Dear Aunt Sally'
The Set of Whole Numbers
Genus
47. A point in four-space - also known as 4-D space - requires four numbers to fix its position. Four-space has a fourth independent direction - described by 'ana' and 'kata.'
left to right
Hyperland
The inverse of subtraction is addition
In Euclidean four-space
48. A way to analyze sequences of events where the outcomes of prior events affect the probability of outcomes of subsequent events.
The Commutative Property of Addition
Markov Chains
Flat Land
Configuration Space
49. Says that when a random process - such as dropping marbles through a Galton board - is repeated many times - the frequencies of the observed outcomes get increasingly closer to the theoretical probabilities.
The Set of Whole Numbers
Irrational
B - 125 = 1200
Law of Large Numbers
50. If a = b then a + c = b + c If a = b then a - c = b - c If a = b then a
Comparison Property
Fourier Analysis and Synthesis
Properties of Equality
Irrational