SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
Search
Test your basic knowledge |
CLEP Pre - Calculus
Start Test
Study First
Subjects
:
clep
,
math
,
calculus
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. log216=x
Get a tuning fork with a different frequency.
x=4
Period = pi - Amplitude = 2 - Horizontal Shift 3 left
arcsin 0
2. y=100vx
3. 85n=64 n=
2/5
arccos(v3)
y'=cosx(2x+3) - sinx (x²+3x+5)
-v3
4. y=sinx(x²+3x+5)
5. cos p/3
1
arctan 0
1/2
1
6. 10e³n-7=23 n=
-1
(ln3)/3
v2/2
0
7. p/4
no solution
arccos(
5
-1/2
8. p
1
v3/2
y'=14x
arcsec(-1)
9. tan p/4
-v3/2
2/5
1
y'=(-14x)/(x²+9)²
10. How do you calculate the amplitude from a set of sinusoidal data?
x=3
Take the highest minus the lowest value and divide by 2
x=125
-v2/2
11. p/4
arcsec(v2)
v3/2
Get a tuning fork with a different frequency.
y'=cosx(2x+3) - sinx (x²+3x+5)
12. sin 5p/4
-v2/2
Period = 2pi - Amplitude = 2 - Vertical Shift up 3 - flip over the x-axis
Period = pi - Amplitude = 2 - Vertical Shift up 3
Period = pi - Amplitude = 2 - Horizontal Shift 3 left
13. undefined
e-1
2
arccos(v3)
1/2
14. tan 3p/4
106/7
-1
-1/2
v3
15. 0
Period = pi - Amplitude = 2 - Horizontal Shift 3 left
y'=x²e^x + 2xe^x
arctan 0
The cofunction of sine
16. What is the base of log5125?
5
arcsin(-
(e
1
17. 4=3e4n+1 n=
y'=x²e^x + 2xe^x
v3/2
0
(log64)/3
18. tan 4p/3
v3
x=81
-1/2
y'=2e^x
19. y=x²e²
20. y=3cos(2x)+1
y'=2xe²
frequency
y'=14x
Period = pi - Amplitude = 3 - Vertical Shift up 1
21. sin 5p/3
-v3/2
1
Period = pi - Amplitude = 2 - Vertical Shift up 3
no solution
22. -p/6
(e
1/2
0
arctan(-?v3)
23. p/4
arctan 1
-1/2
1
infinite
24. sin 2p/3
Make the sound of the fork louder
Period = 2pi - Amplitude = 2 - Up three - Flips over the y-axis
Period = 2pi/3 - Amplitude = 2 - Phase Shift pi/3
v3/2
25. 47n=64 n=
arcsec 1
arctan(-v3)
3/7
y'=2xe²
26. p/3
arccos
v3/2
v3/3
-v3/2
27. tan p/3
x=-3
arccos(-1)
v3
Period = pi - Amplitude = 2 - Vertical Shift up 3
28. undefined
Make the sound of the fork louder
Period = pi - Amplitude = 3 - Vertical Shift up 1
arcsin(-
arccos(-2)
29. y=p³
30. Ln(x)=8 x=
-v2/2
arcsec 2
e8
Arcsine
31. tan 3p/2
arcsin(
U
1
y'=(-14x)/(x²+9)²
32. tan 7p/4
-1
arccos(-1)
-v2/2
y'=((x²+3x+5)(cosx)-sinx(2x+3))/(x²+3x+5)²
33. cosine
The cofunction of sine
y'(4)=25
y'=-2sin²x+2cos²x
y'(1/8)=0
34. cos 5p/6
y'=e/(2vx)
-1
-v3/2
1/2
35. log2(1/8)=x
-1
y'=2p
3n
x=-3
36. cos p
arccos
-1
arctan(?v3)
arcsin(-
37. How many different Sine equations will match the graph of a tuning fork
y'=2p
U
infinite
y'=((cosx)(2x+3)+(x²+3x+5)sinx)/ cos²x
38. sin 4p/3
3/7
-v3/2
arccos(-
arcsin(-1)
39. p
106/7
arccos(-1)
Period = 2pi/3 - Vertical Shift up 3 - Amplitude = 3 - flipped over the x and y axis.
5
40. tan 11p/6
v3/3
arcsin
-v3/3
1
41. 3p/4
arcsin(
1/2
y'=1/(2evx)
arccos(-
42. y=-7/(2x²)
43. y=sinp(x²+3x+5)
44. y=(x²+3x+5)/cosx
45. 2 log5125=x
5
arccos(
x=6
y'=1/(2evx)
46. cos 5p/3
v3/3
1/2
3/7
1
47. -p/4
-1
arccos(-
ln5+1
arctan(-1)
48. undefined
y'=cosx(2x+3) - sinx (x²+3x+5)
1
arcsin(-3)
1
49. y=2cos(3x+pi)
Period = 2pi/3 - Amplitude = 2 - Phase Shift pi/3
arccos(-
arccos(-1)
arcsin
50. sin 11p/6
2
-1/2
(e
arcsin(-