Test your basic knowledge |

CSET Linear Algebra

Subjects : cset, math, algebra
Instructions:
  • Answer 44 questions in 15 minutes.
  • If you are not ready to take this test, you can study here.
  • Match each statement with the correct term.
  • Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.

This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Matrix 3x3: i j k a1 a2 a3 b1 b2 b3 i (a2a3/b2b3) - j(a1a3/b1b3) + k (a1a2/b1b2)= <i - j - k>






2. Show statement is true for n=1 - then show it is ture for K+1






3. (mk) + (mk -1)= (m+1k)






4. To find the minor of an element in a matrix - take the determinant of the part of the matrix without that element.






5. |a?xb?|=|a?||b?|sin? | = | a?. ? is the angle between a? and b? and is restricted to be between 0






6. Sum of numbers divisible by three - number is divisible by 3.






7. Can multiple a vector by a scalar. components of vectors are the same - magnitude is IkI times the vector - direction depends on if k is pos. or neg






8. Does not matter what order you add them in - it will result in straight vector. If (n -1) numbers of vectors are represented by n -1 sides of a polygon - then the nth side is the sum of the vectors






9. Sum of last two digit divisible by 4






10. Same as triangle law except resultant vector is a diagonal of a parallelogram






11. F ? is the angle between vector A? and the x- axis - then Ax=Acos??Ay=Asin?? EX. If ?= 60






12. Take the magnitude of the cross product of any two adjacent vectors of the form <a - b - c>(a - and b are y - y - x-x - and c can be zero)






13. |A|=Ax2+Ay2 ?=tan -1(Ay/Ax)






14. Vectors with same magnitude but are in opposite directions (+?-)






15. A vector with a magnitude of 1. the positive X- axis is vector i - pos. <1 -0> y xis is vector j <0 -1>






16. If a? and b? are two vectors - <a1 - a2> and <b1 - b2> - the dot product of a?and b? is defined as a?






17. Equals the magnitude of the cross product






18. Magnitude and direction






19. Every integer greater than 1 can be expressed as product of prime numbers






20. Must be scalar multiples of each other






21. Is commutative - associative






22. Follows same rules as scalar - but done component by component - and produces another vector (resultant)






23. Dot product must equal zero






24. Switch the direction of one vector and add them (tail to head)






25. (inner product)(scalar product) Result is scalar - large if vectors parallel - 0 if vectors perpendicular. Tells us how close vectors are pointing to same point.






26. Addition: A?+B?=<x1+x2 - y1+y2>or C?+D?=<x1+x2 - y1+y2 -z1+z2> Subtraction: A?- B?=<x1-x2 - y1- y2>or C?+D?=<x1-x2 - y1- y2 -z1-z2> Scalar Multiplication: kC?=k<x1 - y1 -z1>=<kx1 - ky1 - kz1>or kA?=k<x1 - y1>=<kx1 - ky1>






27. Divide bigger by smaller - dividing smaller by remainder - first remainder by second - second by third - until you have a remainder of 0. Last remainder is GCD (aka euclidean algorithm)






28. Vector a +vector b is placing head of a next to tail of b and sum is a new vector






29. On X - Y and Z plane






30. A matrix that can be multiplied by the original to get the identity matrix






31. Multiply first row by first column - add. Multiply first row by second column - add. Mxn multiply by next. Not necessarily commutative






32. If a? and b? are vectors and ? is the angle between them - the dot product denoted by a?






33. Numbers that are a sum of all of their factors. 6 - 8 - 128






34. If the GCF is one - the numbers are relatively prime






35. If the initial point of a vector has coordinate (x1 - y1)and the terminal point has coordinate (x2 - y2) - then the ordered pair that represents the vector is <x2-x1 - y2- y1>> .






36. Check for up to the square root of the number






37. Product of two numbers divided by greatest common denominator






38. Divisible by 2 and 3






39. Or norm - of a vector using the distance formula. |v|=(x2-x1)2+(y2- y1)2. (square each component of vector)






40. Have same magnitude and direction - but possibly different starting points






41. (0 -0) in two dimensions - (0 -0 -0) in three. magnitude is 0 and no direction - it is a point geometrically






42. Vector that describes direction and speed






43. Two vectors are parallel if their components are multiples of each other. Ex. <2 -5> and <4 -10> are because 2(2 -5)= 4 -10






44. Square matrix with ones diagonally and zeros for the rest.