SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GMAT Math: Fractions Decimals Ratios Interest
Start Test
Study First
Subjects
:
gmat
,
math
Instructions:
Answer 24 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. An integer can be expressed as a fraction by making the integer the numerator and making the denominator 1. Example - 16 = 16/1
Fractions - Advanced principles
Converting fractions
Multiplying decimals
Some percentages simply involve moving a decimal point
2. It is easier if it converted to all fraction. You multiply the denominator by integer then add the numerator and place the resulting number over the original denominator - Example - 3 1/2 = 3 = 6/2 = 1/2 + 6/2 = 7/2
Working with a mixed integer and fraction
Reducing fractions
Dividing decimals
Converting fractions
3. To divide one fraction by another - just invert the second fraction and multiply - Example - 2/3 divided by 3/4 = 2/3 x 4/3 = 8/9
Adding / Subtracting decimals
Dividing fractions
The difference between a ratio and a fraction
Percentage
4. You can compare fractions directly only if they have the same denominator. It is easiest to compare two fractions at a time. SHORTCUT = Bowtie = multiply denominator of 1st fraction by numerator of 2nd; denominator of 2nd fraction by numerator of th
Dividing decimals
To get 1% of any number
Comparing fractions
Adding/Subtracting fractions - DIFFERENT denominators
5. Just a fraction in which the denominator is always equal to 100. Fifty percent means 50 parts out of a whole of 100. Like any fraction - a percentage can be reduced - expanded - cross multiplied - converted to a decimal or converted to a fraction.
The difference between a ratio and a fraction
Percentage
Subtracting fractions - SAME denominator
Dividing decimals
6. Before you add or subtract fractions with different denominators - you must make all the denominators the same. You must multiply by a fraction that is equal to 1 to keep the value the same - Example - 1/2 = 2/3 = 1/2x3/3 = 2/3x3/3 = 3/6 + 4/6 = 7/6
Multiplying fractions
Proportions
The difference between a ratio and a fraction
Adding/Subtracting fractions - DIFFERENT denominators
7. Move the decimal point of that number over two places to the left Example - 1% of 600 = 6 ; 1% of 60 = .6
Working with a mixed integer and fraction
The difference between a ratio and a fraction
Comparing fractions
To get 1% of any number
8. To get 10% of any number - move the decimal point over one place Example - 10% of 6 = .6 ; 10% of 60 = 6
Reducing fractions
Some percentages simply involve moving a decimal point
Multiplying fractions
To get 1% of any number
9. To reduce a fraction - find a factor of numerator that is also a factor of the denominator. It saves time to find the bigger factor when you find a common factor - cancel it. Example - 12/15 = 4x3/5x3 = 4/5 - Reducing a larger fraction before work to
Reducing fractions
Dividing decimals
The difference between a ratio and a fraction
Multiplying fractions
10. Just a different way to express a fraction. Example - In two boxes there are 14 shirts - how many shirts are in three boxes? - 2 (boxes)/14 (shirts) = 3 (boxes) / X shirts - then bowtie - 2X = 3 x 14 = 42; 42 / 2 = x; x = 21
Multiplying fractions
Working with a mixed integer and fraction
Ratios
Proportions
11. Just another way of expressing division - Example - 1/2 is equal to 1 divided by 2. Another important way to think of a fraction is as part/whole
Comparing fractions
Fraction
Dividing decimals
To find a more complicated percentage
12. The 'whole' in a ratio is the sum of all its parts. If the ratio is expressed as a fraction - the whole is the sum of the numerator and denominator. Example - the ration of women to men in a room is 3 to 4. The ratio = 3 women / 4 men The fraction =
Converting fractions
Adding/Subtracting fractions - DIFFERENT denominators
The difference between a ratio and a fraction
Dividing fractions
13. In any problem with a percent increase or decrease - the trick is to always put the increase or decrease in terms of the original amount. Example - House in 1980 was $120 -000; in 1988 the house is worth 180 -000. What is the percentage increase? *a
Comparing fractions
Fractions - Advanced principles
Adding/Subtracting fractions - DIFFERENT denominators
Percent increase or decrease
14. To add 2 or more fractions with the same denominator - simply add up the numerators and put the sum over the denominator - Example - 1/7 + 5/7 = (1+5)/7 = 6/7
Working with a mixed integer and fraction
Adding fractions - SAME denominator
Multiplying decimals
Adding/Subtracting fractions - DIFFERENT denominators
15. To subtract 2 or more fractions with the same denominator - subtract the numerators over the denominator - Example - 6/7 - 2/7 = (6-2)/7 = 4/7
Ratios
Some percentages simply involve moving a decimal point
To find a more complicated percentage
Subtracting fractions - SAME denominator
16. To multiply fractions - just multiply the numerators and put the product over the product of the denominators - Example - 2/3 x 6/5 = 12/15
Multiplying decimals
Multiplying fractions
Percent increase or decrease
Compound interest
17. To ________________ - divide the interest into as many parts as are being compounded. For example - if you're compounding semiannually you divide the interest into two equal parts. If you're compounding quarterly - you divide the interest into four e
Compound interest
Adding fractions - SAME denominator
Fraction
Ratios
18. It's easy to break the percentage down into chunks Example 20% of 60 = 10% of 60 = 6; 20% of 60 is double 10% = 2x6 = 12 Example 30% of 60 - 10% of 60 =; 30% is triple 10% = 3x6 = 18
Fractions - Advanced principles
The difference between a ratio and a fraction
To find a more complicated percentage
Some percentages simply involve moving a decimal point
19. More complicated fraction problems usually involve basic rules along with the concepts of part/whole and the 'rest'. Decimals are fractions and fractions can be decimals. When possible - convert decimals to fractions.
Dividing fractions
Fractions - Advanced principles
Some percentages simply involve moving a decimal point
Converting fractions
20. Close relatives of fractions. Can be expressed a fraction and vice versa. The ratio 3 to 4 can be expressed as 3/4.
Subtracting fractions - SAME denominator
Fractions - Advanced principles
Compound interest
Ratios
21. 0.2 = 1/5 - 0.25 = 1/4 - 0.333 = 1/3 - 0.4 = 2/5 - 0.5 = 1/2 - 0.6 = 3/5 - 0.667 = 2/3 - 0.75 = 3/4 - 0.80 = 4/5
Percent increase or decrease
Decimal - Fraction equivalents
Working with a mixed integer and fraction
Percentage
22. To add or subtract decimals - just line up the decimal points and proceed. Example - 6 + 2.5 + 0.3 looks like 6.0 2.5 - 0.3 = 8.8
Subtracting fractions - SAME denominator
Working with a mixed integer and fraction
Adding / Subtracting decimals
Multiplying fractions
23. The way to divide one decimal by another is to convert the number you are dividing by a whole number - you do this by simply moving the decimal point in the divisor as many places as necessary to get a whole number and you match this decimal point mo
Dividing decimals
Multiplying fractions
Fraction
Subtracting fractions - SAME denominator
24. Simply ignore the decimal points - when you are finished - count all the digits that were to the right of the decimal point in original order multiplied. Example - 14.3 x .232 = 3.3176 (there were four decimal points in originally)
Dividing decimals
Fraction
Reducing fractions
Multiplying decimals