SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GMAT Quick Math And Formulas
Start Test
Study First
Subjects
:
gmat
,
math
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Simplifying a root
A^2 - 2ab + b^2
144
25%
GMAT very often tries to trick you by giving a root linked by addition where it is tempting to simplify the terms - for example: √(25 + 16). It is tempting to think that this will result into 5 + 4 - but you can only simplify roots when the terms ins
2. 1/5
20%
16.66%
...yields a positive result (-1)^2 = 1
8.33%
3. 2/5
40%
4
225
...yields a negative result (-1)^57 = -1
4. raising a fraction between zero and 1 to a power...
83.33%
...yields a positive result (-1)^2 = 1
...yields a smaller result (1/2)^2 = 1/4
27
5. what happens when an exponent is negative?
...yields a negative result (-1)^57 = -1
50%
Take the reciprocal of the base and change the sign of the exponent (2)^-2 = 1^2/2^2 = 1/4
You cannot simplify this one
6. 2^4
324
1296
...yields a positive result (-1)^2 = 1
16
7. 1/6
(a+b)(a^2-ab+b^2)
8.33%
324
16.66%
8. Express 9^1/2 as a radical
...yields a smaller result (1/2)^2 = 1/4
121
= the square root of 9 = 3
1296
9. 1/20
83.33%
128
5%
(a+b)(a^2-ab+b^2)
10. 13^2
A^2 - 2ab + b^2
144
169
13
11. 1/6
12 - 24 - 36 - 48 - 60 - 72 - 84 - 96 - 108 - 120
Take the reciprocal of the base and change the sign of the exponent (2)^-2 = 1^2/2^2 = 1/4
16.67%
121
12. √ 2
121
1.41
8.33%
15 - 30 - 45 - 60 - 75 - 90 - 105 - 120
13. 17^2
7776
289
1024
144
14. a^3+b^3
(a+b)(a^2-ab+b^2)
27
125
75%
15. 1/12
2.449
125
A^2 - 2ab + b^2
8.33%
16. √ 3
196
(a+b)(a^2-ab+b^2)
1.73
1.41
17. Multiples of 8
64
625
75%
8 - 16 - 24 - 32 - 40 - 48 - 56 - 64 - 72 - 80 - 88 - 96 - 104 - 112 - 120
18. 18^2
216
32
75%
324
19. 3^3
256
1.73
27
87.50%
20. Express 8^1/3 as a radical
You cannot simplify this one
...yields a negative result (-1)^57 = -1
= the cube root of 8 = 2
7776
21. Multiples of 12
2.449
12 - 24 - 36 - 48 - 60 - 72 - 84 - 96 - 108 - 120
25%
5%
22. 5/6
83.33%
Take the reciprocal of the base and change the sign of the exponent (2)^-2 = 1^2/2^2 = 1/4
256
5%
23. 2^8
13
1024
256
512
24. (a-b)^2 =
625
√25.16 = √25 . √16 = 5.4 - √50 . √18 = √50.18 = √900 = 30 - √144:16 = √144 : √16 = 12/4 = 3
(a+b)(a^2-ab+b^2)
A^2 - 2ab + b^2
25. √ 6
...yields a positive result (-1)^2 = 1
1296
2.449
361
26. a negative number raised to an odd power...
8
Take the reciprocal of the base and change the sign of the exponent (2)^-2 = 1^2/2^2 = 1/4
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
...yields a negative result (-1)^57 = -1
27. to multiple powers (or raise a power to a power)
128
Multiply the exponents 7^2(^3) = 7^6
A^2 - 2ab + b^2
√25.16 = √25 . √16 = 5.4 - √50 . √18 = √50.18 = √900 = 30 - √144:16 = √144 : √16 = 12/4 = 3
28. 6^3
= the square root of 9 = 3
A^2 + 2ab + b^2
216
289
29. 7/8
225
7776
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
87.50%
30. √ 5
Multiply the exponents 7^2(^3) = 7^6
125
2.23
Add the exponents and keep the base 7^3 x 7^5 = 7^8
31. 6^5
7776
256
A^2 - 2ab + b^2
= the square root of 9 = 3
32. Prime Numbers between 1 - 100 (total of 25)
12.50%
2.449
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
256
33. 11^2
256
= the square root of 9 = 3
1024
121
34. √ 169
225
1024
You cannot simplify this one
13
35. 1/8
169
12.50%
A^2 + 2ab + b^2
16
36. √ 625
2
25
16.67%
216
37. 2^10
1024
12.50%
15 - 30 - 45 - 60 - 75 - 90 - 105 - 120
87.50%
38. 5^4
625
4
20%
5%
39. Examples of roots simplification
1296
144
(a-b)(a^2+ab+b^2)
√25.16 = √25 . √16 = 5.4 - √50 . √18 = √50.18 = √900 = 30 - √144:16 = √144 : √16 = 12/4 = 3
40. 5^3
125
144
27
625
41. A^2-B^2
75%
289
8
(A+B)(A-B)
42. √ 4
128
83.33%
2
= the cube root of 8 = 2
43. 15^2
= the square root of 9 = 3
2.23
12 - 24 - 36 - 48 - 60 - 72 - 84 - 96 - 108 - 120
225
44. Multiples of 15
Subtract the exponents and keep the base the same 4^5/4^2 = 4^3
15 - 30 - 45 - 60 - 75 - 90 - 105 - 120
87.50%
625
45. 3/4
√25.16 = √25 . √16 = 5.4 - √50 . √18 = √50.18 = √900 = 30 - √144:16 = √144 : √16 = 12/4 = 3
75%
Subtract the exponents and keep the base the same 4^5/4^2 = 4^3
...yields a positive result (-1)^2 = 1
46. 2^9
512
A^2 - 2ab + b^2
64
= the cube root of 8 = 2
47. 3^5
A^2 + 2ab + b^2
243
1.73
...yields a negative result (-1)^57 = -1
48. to divide powers with the same base...
A^2 + 2ab + b^2
8.33%
Subtract the exponents and keep the base the same 4^5/4^2 = 4^3
1.41
49. to multiple powers with the same base...
(a-b)(a^2+ab+b^2)
Add the exponents and keep the base 7^3 x 7^5 = 7^8
...yields a negative result (-1)^57 = -1
625
50. 6^4
1296
You cannot simplify this one
16.67%
(a+b)(a^2-ab+b^2)