SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GMAT Quick Math And Formulas
Start Test
Study First
Subjects
:
gmat
,
math
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. 1/4
25%
256
8
243
2. 1/5
4
20%
You cannot simplify this one
121
3. √ 169
361
13
216
243
4. 1/8
40%
12.50%
144
3125
5. 2^10
3125
75%
256
1024
6. 1/6
(a+b)(a^2-ab+b^2)
2.23
16.67%
13
7. Express 9^1/2 as a radical
= the square root of 9 = 3
...yields a negative result (-1)^57 = -1
256
169
8. 4^4
256
40%
1024
...yields a positive result (-1)^2 = 1
9. 16^2
16.66%
256
128
7776
10. 5^4
(A+B)(A-B)
Take the reciprocal of the base and change the sign of the exponent (2)^-2 = 1^2/2^2 = 1/4
625
512
11. a negative number raised to an odd power...
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
...yields a negative result (-1)^57 = -1
Take the reciprocal of the base and change the sign of the exponent (2)^-2 = 1^2/2^2 = 1/4
16
12. √ 4
2
25
Multiply the exponents 7^2(^3) = 7^6
125
13. 12^2
144
125
= the square root of 9 = 3
256
14. to multiple powers (or raise a power to a power)
64
Multiply the exponents 7^2(^3) = 7^6
(A+B)(A-B)
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
15. 1/12
32
25
8.33%
75%
16. 1/6
289
8.33%
You cannot simplify this one
16.66%
17. 2^8
75%
...yields a negative result (-1)^57 = -1
16.66%
256
18. 3/4
1.41
75%
1024
40%
19. 5/6
2
83.33%
32
256
20. Prime Numbers between 1 - 100 (total of 25)
5%
144
40%
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
21. 15^2
225
361
2.449
5%
22. Multiples of 12
256
12 - 24 - 36 - 48 - 60 - 72 - 84 - 96 - 108 - 120
1.41
...yields a smaller result (1/2)^2 = 1/4
23. √ 5
Subtract the exponents and keep the base the same 4^5/4^2 = 4^3
2.23
1024
361
24. 2^3
12.50%
8
20%
256
25. 3^4
2.23
81
75%
256
26. 6^3
...yields a positive result (-1)^2 = 1
256
13
216
27. 3^5
243
216
83.33%
13
28. 13^2
20%
125
169
256
29. Examples of roots simplification
√25.16 = √25 . √16 = 5.4 - √50 . √18 = √50.18 = √900 = 30 - √144:16 = √144 : √16 = 12/4 = 3
121
83.33%
1296
30. 1/20
5%
144
...yields a smaller result (1/2)^2 = 1/4
√25.16 = √25 . √16 = 5.4 - √50 . √18 = √50.18 = √900 = 30 - √144:16 = √144 : √16 = 12/4 = 3
31. 1/2
50%
= the square root of 9 = 3
You cannot simplify this one
87.50%
32. (a-b)^2 =
A^2 - 2ab + b^2
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
324
75%
33. a^3-b^3
125
√25.16 = √25 . √16 = 5.4 - √50 . √18 = √50.18 = √900 = 30 - √144:16 = √144 : √16 = 12/4 = 3
(a-b)(a^2+ab+b^2)
1024
34. Simplifying a root
12 - 24 - 36 - 48 - 60 - 72 - 84 - 96 - 108 - 120
75%
GMAT very often tries to trick you by giving a root linked by addition where it is tempting to simplify the terms - for example: √(25 + 16). It is tempting to think that this will result into 5 + 4 - but you can only simplify roots when the terms ins
8.33%
35. 11^2
1.41
64
512
121
36. (a+b)^2 =
169
8 - 16 - 24 - 32 - 40 - 48 - 56 - 64 - 72 - 80 - 88 - 96 - 104 - 112 - 120
A^2 + 2ab + b^2
8.33%
37. 14^2
83.33%
196
64
...yields a smaller result (1/2)^2 = 1/4
38. 2^6
2.23
64
A^2 + 2ab + b^2
√25.16 = √25 . √16 = 5.4 - √50 . √18 = √50.18 = √900 = 30 - √144:16 = √144 : √16 = 12/4 = 3
39. a^3+b^3
(a+b)(a^2-ab+b^2)
256
121
32
40. 19^2
5%
361
25
2.23
41. 17^2
20%
324
64
289
42. 6^4
2
1024
1296
225
43. 5^3
1.41
196
125
12 - 24 - 36 - 48 - 60 - 72 - 84 - 96 - 108 - 120
44. √ 6
(A+B)(A-B)
2.449
1.41
13
45. Multiples of 8
8
8 - 16 - 24 - 32 - 40 - 48 - 56 - 64 - 72 - 80 - 88 - 96 - 104 - 112 - 120
64
(a-b)(a^2+ab+b^2)
46. to divide powers with the same base...
Add the exponents and keep the base 7^3 x 7^5 = 7^8
Subtract the exponents and keep the base the same 4^5/4^2 = 4^3
225
15 - 30 - 45 - 60 - 75 - 90 - 105 - 120
47. 18^2
256
625
(a-b)(a^2+ab+b^2)
324
48. 2/5
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
15 - 30 - 45 - 60 - 75 - 90 - 105 - 120
Multiply the exponents 7^2(^3) = 7^6
40%
49. to multiple powers with the same base...
Add the exponents and keep the base 7^3 x 7^5 = 7^8
√25.16 = √25 . √16 = 5.4 - √50 . √18 = √50.18 = √900 = 30 - √144:16 = √144 : √16 = 12/4 = 3
A^2 - 2ab + b^2
= the cube root of 8 = 2
50. Express 8^1/3 as a radical
216
= the cube root of 8 = 2
512
81