SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
Search
Test your basic knowledge |
GMAT Quick Math And Formulas
Start Test
Study First
Subjects
:
gmat
,
math
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. to multiple powers (or raise a power to a power)
50%
1.73
Multiply the exponents 7^2(^3) = 7^6
8.33%
2. √ 6
16.66%
Add the exponents and keep the base 7^3 x 7^5 = 7^8
2.449
83.33%
3. Multiples of 12
12 - 24 - 36 - 48 - 60 - 72 - 84 - 96 - 108 - 120
1296
Take the reciprocal of the base and change the sign of the exponent (2)^-2 = 1^2/2^2 = 1/4
1.41
4. 3^4
2.449
Multiply the exponents 7^2(^3) = 7^6
27
81
5. 1/12
8.33%
5%
12.50%
289
6. Prime Numbers between 1 - 100 (total of 25)
225
50%
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
16.67%
7. 6^3
216
12.50%
125
16.67%
8. 11^2
81
121
1.41
196
9. Express 9^1/2 as a radical
1296
= the cube root of 8 = 2
625
= the square root of 9 = 3
10. 4^4
2.23
256
= the square root of 9 = 3
15 - 30 - 45 - 60 - 75 - 90 - 105 - 120
11. √25+16 = √41
= the square root of 9 = 3
64
You cannot simplify this one
...yields a negative result (-1)^57 = -1
12. 5^5
256
40%
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
3125
13. 7/8
Add the exponents and keep the base 7^3 x 7^5 = 7^8
169
8 - 16 - 24 - 32 - 40 - 48 - 56 - 64 - 72 - 80 - 88 - 96 - 104 - 112 - 120
87.50%
14. Express 8^1/3 as a radical
= the cube root of 8 = 2
4
(a-b)(a^2+ab+b^2)
16.66%
15. 5^4
125
27
625
87.50%
16. 1/2
7776
50%
Take the reciprocal of the base and change the sign of the exponent (2)^-2 = 1^2/2^2 = 1/4
4
17. 2^10
2
1024
20%
16.67%
18. Multiples of 15
256
A^2 + 2ab + b^2
5%
15 - 30 - 45 - 60 - 75 - 90 - 105 - 120
19. raising a fraction between zero and 1 to a power...
...yields a smaller result (1/2)^2 = 1/4
5%
16.67%
16.66%
20. a^3+b^3
15 - 30 - 45 - 60 - 75 - 90 - 105 - 120
121
625
(a+b)(a^2-ab+b^2)
21. 15^2
A^2 - 2ab + b^2
Subtract the exponents and keep the base the same 4^5/4^2 = 4^3
225
196
22. 2^6
...yields a positive result (-1)^2 = 1
64
16.66%
256
23. 2^7
361
1024
12 - 24 - 36 - 48 - 60 - 72 - 84 - 96 - 108 - 120
128
24. Multiples of 8
75%
3125
8 - 16 - 24 - 32 - 40 - 48 - 56 - 64 - 72 - 80 - 88 - 96 - 104 - 112 - 120
27
25. 2^5
16
32
40%
27
26. 3^5
Multiply the exponents 7^2(^3) = 7^6
1024
243
...yields a smaller result (1/2)^2 = 1/4
27. 19^2
361
(a-b)(a^2+ab+b^2)
(a+b)(a^2-ab+b^2)
8
28. √ 3
196
1.73
256
12.50%
29. 18^2
75%
128
243
324
30. (a+b)^2 =
144
Take the reciprocal of the base and change the sign of the exponent (2)^-2 = 1^2/2^2 = 1/4
16.67%
A^2 + 2ab + b^2
31. 16^2
256
16.67%
(a-b)(a^2+ab+b^2)
2
32. a negative number raised to an odd power...
256
...yields a negative result (-1)^57 = -1
7776
225
33. 2/5
196
Subtract the exponents and keep the base the same 4^5/4^2 = 4^3
7776
40%
34. 1/8
128
√25.16 = √25 . √16 = 5.4 - √50 . √18 = √50.18 = √900 = 30 - √144:16 = √144 : √16 = 12/4 = 3
12.50%
81
35. 1/5
625
5%
1.73
20%
36. 17^2
289
361
256
15 - 30 - 45 - 60 - 75 - 90 - 105 - 120
37. 2^8
You cannot simplify this one
256
4
1.41
38. 5/6
83.33%
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
216
256
39. 4^5
75%
1024
(A+B)(A-B)
125
40. 13^2
216
289
169
2.449
41. 5^3
2.23
...yields a smaller result (1/2)^2 = 1/4
A^2 - 2ab + b^2
125
42. 1/20
243
= the cube root of 8 = 2
5%
Multiply the exponents 7^2(^3) = 7^6
43. Simplifying a root
125
1296
(A+B)(A-B)
GMAT very often tries to trick you by giving a root linked by addition where it is tempting to simplify the terms - for example: √(25 + 16). It is tempting to think that this will result into 5 + 4 - but you can only simplify roots when the terms ins
44. 14^2
361
50%
196
225
45. 3/4
121
(a-b)(a^2+ab+b^2)
289
75%
46. 1/4
Take the reciprocal of the base and change the sign of the exponent (2)^-2 = 1^2/2^2 = 1/4
144
Multiply the exponents 7^2(^3) = 7^6
25%
47. (a-b)^2 =
...yields a negative result (-1)^57 = -1
A^2 - 2ab + b^2
1296
625
48. 4^3
20%
{2 -3 -5 -7 -11 -13 -17 -19 -23 -29 -31 -37 -41 -43 -47 -53 -59 -61 -67 -71 -73 -79 -83 -89 -97}
64
7776
49. 3^3
25%
27
1024
Add the exponents and keep the base 7^3 x 7^5 = 7^8
50. a negative number raised to an even power...
...yields a positive result (-1)^2 = 1
(a-b)(a^2+ab+b^2)
4
8.33%