SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GRE Math: Quadrilaterals And Other Polygons
Start Test
Study First
Subjects
:
gre
,
math
Instructions:
Answer 10 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. polygons: sum of all exterior angles
(n-2)180
360
quadrilateral with one pair of parallel sides - parallel sides are bases - heights are equal - legs may or may no be equal (=isosceles trapezoid) - diagonals may or may not be equal - area = .5h(b1+b2)
All sides are equal - all angles are 90 - both diagonals bisect each other at 90 - each diagonal is ssqrt2 - area = s^2
2. kite
2 pairs of adjacent congruent sides - the diagonals are perpendicular to each other - the longer diagonal bisects the shorter - the longer diagoanl bisects the two angles whose vertices are its endpoints
360
Opposite angles are equal - consecutive angles are supplementary - opposite sides are equal - diagonals bisect each other - area= b*h - perimenter = 2b + 2c
quadrilateral with parallel opposite sides
3. square
Opposite angles are equal - consecutive angles are supplementary - opposite sides are equal - diagonals bisect each other - area= b*h - perimenter = 2b + 2c
Parallelograms with right angles - all angles are 90 - diagonals are equal (not perpendicular) - perimeter = 2b+2a - area = a*b
All sides are equal - all angles are 90 - both diagonals bisect each other at 90 - each diagonal is ssqrt2 - area = s^2
(n-2)180
4. polygons: number of diagonals is
(n*(n-3)/2 where n>=3
Equilateral parallelogram - opposite angles are equal - all sides are equal - diagonals are perpendicular to each other - perimeter=4s - area =b*h= half the product of the diagonals
Parallelograms with right angles - all angles are 90 - diagonals are equal (not perpendicular) - perimeter = 2b+2a - area = a*b
(n-2)180
5. facts about parallelograms
Opposite angles are equal - consecutive angles are supplementary - opposite sides are equal - diagonals bisect each other - area= b*h - perimenter = 2b + 2c
quadrilateral with parallel opposite sides
All sides are equal - all angles are 90 - both diagonals bisect each other at 90 - each diagonal is ssqrt2 - area = s^2
Equilateral parallelogram - opposite angles are equal - all sides are equal - diagonals are perpendicular to each other - perimeter=4s - area =b*h= half the product of the diagonals
6. rectangle
2 pairs of adjacent congruent sides - the diagonals are perpendicular to each other - the longer diagonal bisects the shorter - the longer diagoanl bisects the two angles whose vertices are its endpoints
Parallelograms with right angles - all angles are 90 - diagonals are equal (not perpendicular) - perimeter = 2b+2a - area = a*b
quadrilateral with one pair of parallel sides - parallel sides are bases - heights are equal - legs may or may no be equal (=isosceles trapezoid) - diagonals may or may not be equal - area = .5h(b1+b2)
Equilateral parallelogram - opposite angles are equal - all sides are equal - diagonals are perpendicular to each other - perimeter=4s - area =b*h= half the product of the diagonals
7. trapezoid
quadrilateral with one pair of parallel sides - parallel sides are bases - heights are equal - legs may or may no be equal (=isosceles trapezoid) - diagonals may or may not be equal - area = .5h(b1+b2)
(n-2)180
Equilateral parallelogram - opposite angles are equal - all sides are equal - diagonals are perpendicular to each other - perimeter=4s - area =b*h= half the product of the diagonals
2 pairs of adjacent congruent sides - the diagonals are perpendicular to each other - the longer diagonal bisects the shorter - the longer diagoanl bisects the two angles whose vertices are its endpoints
8. parallelogram
2 pairs of adjacent congruent sides - the diagonals are perpendicular to each other - the longer diagonal bisects the shorter - the longer diagoanl bisects the two angles whose vertices are its endpoints
Equilateral parallelogram - opposite angles are equal - all sides are equal - diagonals are perpendicular to each other - perimeter=4s - area =b*h= half the product of the diagonals
Parallelograms with right angles - all angles are 90 - diagonals are equal (not perpendicular) - perimeter = 2b+2a - area = a*b
quadrilateral with parallel opposite sides
9. rhombus
Equilateral parallelogram - opposite angles are equal - all sides are equal - diagonals are perpendicular to each other - perimeter=4s - area =b*h= half the product of the diagonals
(n*(n-3)/2 where n>=3
quadrilateral with parallel opposite sides
2 pairs of adjacent congruent sides - the diagonals are perpendicular to each other - the longer diagonal bisects the shorter - the longer diagoanl bisects the two angles whose vertices are its endpoints
10. polygons: sum of all interior angles
(n*(n-3)/2 where n>=3
quadrilateral with one pair of parallel sides - parallel sides are bases - heights are equal - legs may or may no be equal (=isosceles trapezoid) - diagonals may or may not be equal - area = .5h(b1+b2)
(n-2)180
All sides are equal - all angles are 90 - both diagonals bisect each other at 90 - each diagonal is ssqrt2 - area = s^2