SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
|
Email
Search
Test your basic knowledge |
GRE Math Strategies
Start Test
Study First
Subjects
:
gre
,
math
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. x more than y
x + y
equal to the slope of the other
x²+ 2xy+y²
hemisphere
2. Any integer is divisible by 9 - if
x and y
obtuse angle
right triangle
the sum of its digits is divisible by 9
3. 2k
expression of an even number
set
properties of a rectangle
180 degrees
4. If b²-4ac < 0 - there are
(x/100)m= n
coinciding lines
no solutions
acute angle
5. 1. solve the equation or inequality 2. use ONLY the solutions which satisfy the condition required - the set of all x such that x is greater than or equal to 10 R= {x: x=10}
v2/2 or .71
when finding a solution set
the percent of decrease
y angle< x angle
6. x>z
n percent greater than x
hemisphere
x>y and y>z
a+b+d=c+d
7. Then their intersection is the null or empty set - written as Ø
a relation is a function
if two sets have no elements in common
angle
the sum of its digits is divisible by 3
8. If the each element of the domain occurs only once as a FIRST component
(x-y/x)100
two solutions
a relation is a function
approx sums
9. Is a subset of every set
isosceles triangle
null set
y intercept
diameter
10. V2/2- v2/2 - 1 (90-45-45)
properties of a square
x + y
equilateral triangle
isosceles triangle
11. | |
parallel
permutations
+y
right triangle
12. y<x
360 degrees
x>y
equilateral triangle
y-x
13. If under the operation - any two members of the set constitute an element of the set ( * the product of the elements multiplied by themselves must also be an element of the set*)
equilateral triangle
closed set
x - y
x + y
14. Is a rectangular rhombus 1. all four sides are equal 2. opposite pairs of sides are parallel 3. diagonals are equal - are perpendicular to each other - and bisect each other. 4. all the angles are right triangles 5. diagonals intersect the vertices a
properties of a square
x%
domain of a relation
circle
15. M= y2-y1/x2-x1
a<x<b
simultaneous equations in 2 unknowns
slope of a line joining two points
x²-y²
16. 1. subtract each number from the average of the numbers 2. square the result of each of the numbers 3. add all those results and then divide by how many numbers you originally had. 4. take the square root of that result
reflex angle
standard deviation
v3/2 or .87
right triangle
17. Volume= 2/3?r² surface area= 2?r² (w/o bases) or 3?r² (with bases)
hemisphere
average
v2/2 or .71
approx square roots
18. Every set is a subset of
itself
(x-y/x)100
x + y
opposite the greatest side
19. 2k + 1
expression of an odd number
properties of a rectangle
angle
opposite the greatest side
20. In a triangle - if ?c(interior angle in triangle) and ?d(exterior angle out of triangle) are supplmentary angles - than ?a and ?b are remote interior angles to <d - thus - a +b+c = 180 (triangle) c+d = 180 (supplementary angles)
angle a and angle b = angle d
equal
x and y
Axioms
21. The sum of the interior angles is
approx sums
Axioms
180 degrees
x²-2xy+y²
22. (x1+ x2/2) - (y1+y2/2) Each coordinate of the midpoint is equal to the average of the corresponding cordinates of the endpoints
times
expression of an odd number
equilateral triangle
midpoint of a line segment joining 2 parts
23. Less than 90°
perpendicular
v2/2 or .71
acute angle
semicircle
24. A pair of equations in two unknowns (each is graphed seperately and each is represented by a straight line)
chord
simultaneous equations in 2 unknowns
n percent greater than x
simultaneous equations
25. (x+y)(x+y)= (x+y)²
x²+ 2xy+y²
domain of a relation
the last two digits of the number make a number that is divisible by 4
hemisphere
26. Area= 1/2bh perimeter= a+b+c
v3/2 or .87
approx square roots
triangle
inconsistent lines
27. z>y
x<0 and z=x+y
even
central angle
expression of an odd number
28. ? if a side is equal to b side then - the opposite corresponding angles are
perpendicular bisectors
equal
right triangle
x intercept
29. ?
slope of a line joining two points
the sum of its digits is divisible by 3
commutative axiom of addition and multiplication
is a subset of
30. (amount of decrease/original amount) x 100
average
w>0 and x>y
null set
the percent of decrease
31. 3(4+1)= 3 x 4 + 3 x 1
distributive axiom
properties of parallelograms
xy-xz
a?n
32. 9-40-41
Axioms
properties of a rhombus
right triangle
rectangle
33. The angles opposite to sides that are equal in length have
x + y
square
never divide by zero
equal angles
34. 8-15-17
right triangle
rectangle
belongs to
the last two digits of the number make a number that is divisible by 4
35. x+w> y+z
x>y and y>z
average
xy>0
x>y and w>z
36. A chord through the center of the circle
xy-xz
any variable
tangent
diameter
37. x older than y
inscribed angle
v3/2 or .87
opposite the greatest side
x + y
38. If an equation can be put into the form y= mx +b - then
b is the y-intercept
polygon
the square of x
perpendicular bisectors
39. (3+5) +6= 3+ (5+6) and (3x5)6= 3(5x6)
1/2
right triangle
xy-xz
associative axiom of addition and multiplication
40. Any arc length is less than
360 degrees
x>y>0 and w>z>0
right triangle
right triangle
41. 1. round the numbers being multiplied to one more place than it is being asked. 2. Multiply the rounded off numbers 3. round of product to desired number of places
right triangle
approx products
perpendicular bisectors
1.7
42. A<x and x<b
22/7 or 3.14
x + y
x - y
a<x<b
43. All three sides and all three angles are equal
perpendicular
equilateral triangle
x + y
trapezoid
44. N= number of objects (order matters!!!) k= rate at a time nPk= n!/(n-k)! (remember to cancel common numbers)
approx sums
right triangle
permutations
finding the union of sets
45. Area= 1/2?r2 length= 1/2?d= ?r perimeter= d(1/2? +1)
sphere
implies
semicircle
determining if a number is prime
46. A closed plane whose sides are straight lines. The sum of the angles is equal to 180(n-2) - where n is the number of sides.
equals
right triangle
polygon
x>y and y>z
47. Of
x + y
times
w<0 and x>y
x<0 and z=x+y
48. Intersect at only one point - the point is the only solution to the pair of equations
associative axiom of addition and multiplication
(y-x/x)100
even
consistent lines
49. If b²-4ac > 0 there are
two solutions
cylinder
solution set
rectangular solid
50. N= combinations taken (order does not matter) r= rate at a time nCr or C(n -r) = (n)!/(r)! (remember to cancel out common numbers)
equilateral triangle
right triangle
equilateral triangle
combinations