SUBJECTS
|
BROWSE
|
CAREER CENTER
|
POPULAR
|
JOIN
|
LOGIN
Business Skills
|
Soft Skills
|
Basic Literacy
|
Certifications
About
|
Help
|
Privacy
|
Terms
Search
Test your basic knowledge |
SAT Math: Concepts And Tricks
Start Test
Study First
Subjects
:
sat
,
math
Instructions:
Answer 50 questions in 15 minutes.
If you are not ready to take this test, you can
study here
.
Match each statement with the correct term.
Don't refresh. All questions and answers are randomly picked and ordered every time you load a test.
This is a study tool. The 3 wrong answers for each question are randomly chosen from answers to other questions. So, you might find at times the answers obvious, but you will see it re-enforces your understanding as you take the test each time.
1. Subtract the smallest from the largest and add 1
Mixed Numbers and Improper Fractions
Interior and Exterior Angles of a Triangle
Repeating Decimal
Counting Consecutive Integers
2. For all right triangles: a^2+b^2=c^2
Adding/Subtracting Signed Numbers
Average Rate
Pythagorean Theorem
Similar Triangles
3. Parentheses - Exponents -Multiplication and Division(reversible) - Addition and Subtraction (reversible)
Multiples of 3 and 9
PEMDAS
Using the Average to Find the Sum
Counting Consecutive Integers
4. An isosceles triangle has 2 equal sides and the angles opposite the equal sides (base angles) are also equal - an equaliteral is a triangle where all 3 sides are equal - thus the angles are equal - regardless of side length the angle is always 60 deg
Circumference of a Circle
Using an Equation to Find the Slope
Isosceles and Equilateral triangles
Mixed Numbers and Improper Fractions
5. To multiply or divide integers - firstly ignore the sign and compute the problem - given 2 negatives make a positive - 2 positives make a positive - and one negative - and one positive make a negative attach the correct sign
Counting the Possibilities
Using an Equation to Find an Intercept
Triangle Inequality Theorem
Multiplying/Dividing Signed Numbers
6. Divisible by 3 if: sum of it's digits is divisible by 3 - divisible by 9 if: sum of digits is divisible by 9
Area of a Triangle
Adding and Subtracting Roots
Relative Primes
Multiples of 3 and 9
7. The median is the value that falls in the middle of the set - the mode is the value that appears most often
Median and Mode
Characteristics of a Rectangle
Area of a Sector
Evaluating an Expression
8. Direct variation: equation: y=kx - where k is a nonzero constant trick: y changes directly as x does inverse variation: equation: xy=k trick: y doubles as x halves and vice-versa
Remainders
Multiples of 2 and 4
Direct and Inverse Variation
Negative Exponent and Rational Exponent
9. To add a positive and negative integer first ignore the signs and find the positive difference between the two integers - attatch the sign of the original with higher absolute value - to subtract negative integers simply change it into an addition pr
Surface Area of a Rectangular Solid
Remainders
Adding/Subtracting Signed Numbers
PEMDAS
10. To solve a proportion - cross multiply
Using Two Points to Find the Slope
Solving a Proportion
Characteristics of a Rectangle
Mixed Numbers and Improper Fractions
11. # associated with of on top - # associated with to on bottom Example: ratio of 20 oranges to 12 apples? Work: 20/12 Answer: 5/3
Average Formula -
Length of an Arc
Interior Angles of a Polygon
Setting up a Ratio
12. Integers are whole numbers; they include negtavie whole numbers and zero - Rational numbers can be expressed as a ratio of two integers - irration numbers are real numbers that cant be expressed precisely as a fraction or decimal.
Number Categories
Evaluating an Expression
Finding the Missing Number
Area of a Triangle
13. A decimal with a sequence of digits that repeats itself indefinitely; to find a particular digit in the repetition - use the example: if there are 3 digits that repeat - every 3rd digit is the same. If you want the 31st digit - then the 30th digit is
Multiples of 2 and 4
Interior Angles of a Polygon
Repeating Decimal
Number Categories
14. Change in y/ change in x rise/run
Combined Percent Increase and Decrease
Similar Triangles
Using Two Points to Find the Slope
Using an Equation to Find an Intercept
15. The intersection of the sets of A and B - written AnB - is the set of elements that are in both A and B.
Intersection of sets
Exponential Growth
Using an Equation to Find an Intercept
Characteristics of a Parallelogram
16. Notation: f(x) read: 'f of x' evaluation: if you want to evaluate the function for f(4) - replace x with 4 everywhere in the equation
Function - Notation - and Evaulation
Adding and Subtraction Polynomials
Solving an Inequality
Even/Odd
17. To multiply fractions - multiply the numerators and multiply the denominators
Multiplying and Dividing Roots
Finding the Original Whole
Multiplying Fractions
Factor/Multiple
18. A sector is a piece of the area of a circle. If n is the degree measure of the sector's central angle then the formula is: Area of a Sector = (n/360) (pr^2)
PEMDAS
Interior Angles of a Polygon
Finding the midpoint
Area of a Sector
19. Sum=(Average) x (Number of Terms)
Probability
Median and Mode
Adding and Subtracting Roots
Using the Average to Find the Sum
20. Factor can be divisible (factor of 12 and 8 is 4). Multiple is a multiple (multiple of 12 and 8 is 24).
Parallel Lines and Transversals
Direct and Inverse Variation
Factor/Multiple
Percent Increase and Decrease
21. (average of the x coordinates - average of the y coordinates)
Finding the midpoint
Using an Equation to Find the Slope
Comparing Fractions
Remainders
22. Multiply te coefficients and the variables separately Example: 2a*3a Work: (23)(aa) Answer: 6a^2
Intersecting Lines
Even/Odd
Multiplying Monomials
Exponential Growth
23. Example: If the ratio of males to females is 1 to 2 - then what is the ratio of males to people? - work: 1/(1+2) answer: 1/3
Adding/Subtracting Fractions
Multiplying and Dividing Roots
The 3-4-5 Triangle
Part-to-Part Ratios and Part-to-Whole Ratios
24. Add up numbers and divide by the number of numbers - Average=(sum of terms)/(# of terms)
Parallel Lines and Transversals
Average Formula -
Dividing Fractions
Volume of a Cylinder
25. Factor out the perfect squares
Simplifying Square Roots
Counting the Possibilities
Percent Formula
Mixed Numbers and Improper Fractions
26. Similar triangles have the same shape: corresponding angles are equal and corresponding sides are proportional
Similar Triangles
Length of an Arc
Percent Formula
Interior and Exterior Angles of a Triangle
27. Add the exponents and keep the same base
Number Categories
(Least) Common Multiple
Multiplying and Dividing Powers
Percent Increase and Decrease
28. Probability= Favorable Outcomes/Total Possible Outcomes
Adding/Subtracting Fractions
Probability
Circumference of a Circle
Average of Evenly Spaced Numbers
29. 1. turn it into ax^2 + bx + c = 0 form 2. factor 3. set both factors equal to zero 4. you get 2 solutions
Probability
Adding and Subtracting monomials
Area of a Triangle
Solving a Quadratic Equation
30. To combine like terms - keep the variable part unchanged while adding or subtracting the coefficients - Example: 2a+3a=? work: (2+3)a answer: 5a
Comparing Fractions
Average Rate
Median and Mode
Adding and Subtracting monomials
31. The 3 angles of any triangle add up to 180 degrees - an exterior angles of a triangle is equal to the sum of the remote interior angles - the 3 exterior angles add up to 360 degrees
Number Categories
Interior and Exterior Angles of a Triangle
Prime Factorization
Negative Exponent and Rational Exponent
32. To evaluate an algebraic expression - plug in the given values for the unknowns and calculate according to PEMDAS
Evaluating an Expression
Determining Absolute Value
Mixed Numbers and Improper Fractions
Characteristics of a Square
33. Use this example: Example: after a 5% increase - the population was 59 -346. What was the population before the increase? Work: 1.05x=59 -346 Answer: 56 -520
Finding the Original Whole
Probability
Using an Equation to Find an Intercept
Multiplying Fractions
34. To increase: add decimal version of percent to one and times that # to the # you want to increase. Example: increase 40 by 25% Work: 1.25*40=? Answer: 50
Characteristics of a Parallelogram
Solving an Inequality
Percent Increase and Decrease
PEMDAS
35. Average the smallest and largest numbers Example: What is the average of integers 13 through 77? Work: (13+77)/2 Answer: 45
Percent Formula
Intersecting Lines
Multiplying Monomials
Average of Evenly Spaced Numbers
36. A square is a rectangle with four equal sides; Area of Square = side*side
Simplifying Square Roots
Factor/Multiple
Counting the Possibilities
Characteristics of a Square
37. If there are m ways one event can happen and n ways a second event can happen - then there are m × n ways for the 2 events to happen
Percent Formula
Interior and Exterior Angles of a Triangle
Counting the Possibilities
Percent Increase and Decrease
38. The absolute value of a number is the distance of the number from zero - since absolute value is distance it is always positive
Using an Equation to Find the Slope
Determining Absolute Value
Isosceles and Equilateral triangles
Pythagorean Theorem
39. you can add/subtract when the part under the radical is the same
Volume of a Cylinder
Characteristics of a Rectangle
The 3-4-5 Triangle
Adding and Subtracting Roots
40. Volume of a Rectangular Solid = lwh; Volume of a Cube= (L)^3
Solving a Proportion
Volume of a Rectangular Solid
Multiplying and Dividing Roots
Prime Factorization
41. A parallelogram has two pairs of parallel sides - opposite sides are equal - opposite angles are equal - consecutive angles add up to 180 degrees; Area of Parallelogram = base x height
Percent Formula
Multiplying/Dividing Signed Numbers
Characteristics of a Parallelogram
Tangency
42. Area of Triangle = 1/2 (base)(height) - the height is the perpendicular distance between the side that's chosen as the base and the opposite vertex
Exponential Growth
Multiplying and Dividing Roots
Area of a Triangle
Reciprocal
43. Part = Percent x Whole
Percent Formula
(Least) Common Multiple
Exponential Growth
Intersecting Lines
44. Integers that have no common factor other than 1 - to determine whether two integers are relative primes break them both down to their prime factorizations
Dividing Fractions
Relative Primes
Multiples of 2 and 4
Counting Consecutive Integers
45. Use units to keep things straight (make sure you use 1 unit for each thing) Example: use just inches in your cross multiplication - not inches and feet
Rate
The 3-4-5 Triangle
Area of a Triangle
Length of an Arc
46. To solve an inequality do whatever is necessary to both sides to isolate the variable. When you multiply or divide both sides by a negative number you must reverse the sign
Percent Formula
Finding the midpoint
Remainders
Solving an Inequality
47. Surface Area = 2lw + 2wh + 2lh
Finding the Distance Between Two Points
Surface Area of a Rectangular Solid
Multiplying Fractions
Characteristics of a Parallelogram
48. 1. Re-express them with common denominators 2. Convert them to decimals
Multiplying Fractions
Counting the Possibilities
Comparing Fractions
Remainders
49. The sum of the measures of the interior angles of a polygon = (n - 2) × 180 - where n is the number of sides
Multiplying and Dividing Powers
Rate
Interior Angles of a Polygon
Tangency
50. To find the reciprocal of a fraction switch the numerator and the denominator
Reciprocal
Multiples of 3 and 9
Direct and Inverse Variation
Determining Absolute Value